
PortLand:!
A Scalable Fault-Tolerant Layer 2

Data Center Network Fabric
Radhika Niranjan Mysore, Andreas Pamboris, Nathan Farrington, Nelson Huang,
Pardis Miri, Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat

Presented by Frank Austin Nothaft

Network management at scale

• O(10-100K) machines per datacenter:

• O(40) machines per rack

• O(20) racks per row

• Network is typically organized in a Fat-tree like
topology —> deeply hierarchical

• Machines are virtualized

Network management at scale:
What is expensive?

• Routing tables explode

• Lots of hardware —> config-by-human = bad

• Updates that need to be broadcast

Network management at scale:
What do we want?

1. Easy VM migration

2. No admin involvement

3. Efficient communication between any two nodes

4. No loops

5. Efficient failure recovery

What are the implications
of these aims?

R1: VM Migration Cannot do at layer 3 —> breaks existing TCP
connections

R2: No admin Need single L2 fabric for whole DC
Not compatible with R5 with current rout. protocols

R3: Any-to-any Requires huge routing tables

R4: No loops Can occur during routing protocol convergence
Can avoid at L2, but either inefficient or incompat.

R5: Failure Recov. Need to quickly update routing info
Difficult with present protocols —> require bcast

PortLand’s realization:!
If topology is known,

problems are much simpler!

Datacenter Topology

• In a Fat Tree, bandwidth increases towards the core

• Variety of topologies, generally a multi-rooted tree

How can we exploit topology?
• We can solve some problems by minimizing distributed

state, while solving others by centralizing state

• PortLand does the following two high-level optimizations:

1. Rewrite addresses:

• If we can rewrite the MAC addresses of leaf nodes,
we can greatly simplify routing tables

2. Offload management to centralized Fabric Controller:

• Assists with address resolution, failover, etc.

Address Rewriting
• MAC address —> 48 bit unique address for each

endpoint, used for ethernet routing

• Issue: if MAC addresses are random, routing table
of each switch grows O(n)

• PortLand uses knowledge of topology to rewrite
MAC addresses at edge routers:

pod:position:port:vmid

Aside: Ethernet Switching

?

?

?

?

1

2

3

4

1

2

3

4

Switch Scheduler

Routing Table

Routing table —> SRAM based CAM

Location Discovery
• Authors present distributed algo. for discovering switch

location:

• Each switch sends a message indicating port
direction, nodes do not send messages

• Insight: edge routers only receive messages from
aggregation routers, aggregation routers will
receive messages from edge routers on
downwards facing ports

• Fabric manager assigns IDs to switches

So, what do we do
with this?

Proxy ARP

• Natively, resolve addresses by broadcasting

• However, if Fabric Manager knows an IP<->MAC
mapping, we can eliminate broadcast traffic

Loop-free Forwarding

Fact: Fat trees have many physical loops!
Can you find them all?

Provably Loop-free Forwarding

If we allow a packet to only go up the tree once,
we cannot have a loop

As an aside: Fat Tree ~= folded Clos. Haven’t we known this since the 50’s?

Failover

• Fabric Manager maintains state of failed links

• Link failure is tracked using Location Discovery
protocol —> missing message = failure

Validation

Experimental Testbed

• 20x 4-port NetFPGAs arranged in a Fat Tree, 1
Gbps per port

• 16 compute nodes <— datacenter scale?

http://netfpga.org/1G_specs.html

http://netfpga.org/1G_specs.html

Fabric Manager Capacity

• Authors cite 25 ARPs/sec/host as a high number

• 30,128 hosts <<< 100k machines, 32 VM/machine?

• Also, deus ex machina number: 25µs/request?

Conclusions

PortLand:
Did it achieve its goals?

R1: VM Migration Migrate via ARP + unified L2

R2: No admin Distributed process for learning network topology
coupled with central Fabric Manager

R3: Any-to-any Rewrite MAC addresses to reduce routing table
size, makes problem tractable

R4: No loops Provably loop free routing on Fat Trees

R5: Failure Recov. Distributed topology learning algorithm rapidly
learns failure status

Discussion

• If you have a practically static topology, you can
eliminate most of the complexity in this paper…?

• Is the Fabric Manager actually viable as
datacenters continue to increase in size?

• Wouldn’t this be simpler if you pushed MAC
address rewriting down to your VMM/hypervisor?

