-astpass

A Centralized “Zero-Queue” Datacenter Network



|deal datacenter properties

* Burst control
— memcached, Fine-grained RTO

* Low tall latency
— pFabric, HULL, DCTCP, D3, Orchestra

* Multiple app/user objectives
— Hedera, SWAN, MATE, DARD, VL2, ...

How to satisty all these properties simultaneously?



How to design a network
with. ..

e “"Zero” network queues

* High utilization

* Multiple resource allocation objectives



Control each packet’s timing and path
using a centralized arbiter
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Architecture
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Example: Packet from A to B

S5us A » Arbiter "A has 1 packet for B"
1-20us timeslot allocation & path selection
15pus Arbiter » A "@t=107: A~» B through R1"
no queuing A->B sends data
R1 R2

Arbitér




Timeslot Allocation

active flows last allocated

SIC dst src dst allocation  srcs & dsts
45 QO O v
47 IO v
4¢  EOW m@E0 x
48 IO O v
51 EECH EERD) v

Ordering of requests used to implement policies.
E.g. LRU for max-min fairness,
lowest remaining MTUs for min-FCT



Path selection

Use edge coloring, each color denotes a path



Implementation

e Pipelined execution of tasks over multiple cores

precomputation 1 batch of timeslots

LI 1

alloc #1 [ NG
alloc #2

path-sel #1
path-sel #2
path-sel #3
path-sel #4

comm #1

time —s

e (lock synchronization using PTP (achieves sub microsecond
synchronization)

e C(lient timing using hrtimers (microsecond scale precision)



Fault tolerance

* Arbiter failures
— hot backups

* Network tailures
— packet loss reports



Results:

Smaller queues, lower RTTs
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Results:

Lesser retransmissions In production...
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Results:

...But latency and throughput profiles were
barely ditferent
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ISSUes

* Not really zero-queue — simply relocated to the
endpoints and arbiter

 How to scale”
— Several arbiters would need to cooperate
— Precise time synchronization required

 How useful Is Fastpass in practice”
— End-to-end delay at varying load
— Experimental setup had only single ToR



