-astpass

A Centralized “Zero-Queue” Datacenter Network

|deal datacenter properties

* Burst control
— memcached, Fine-grained RTO

* Low tall latency
— pFabric, HULL, DCTCP, D3, Orchestra

* Multiple app/user objectives
— Hedera, SWAN, MATE, DARD, VL2, ...

How to satisty all these properties simultaneously?

How to design a network
with. ..

e “"Zero” network queues

* High utilization

* Multiple resource allocation objectives

Control each packet’s timing and path
using a centralized arbiter

Traditional

SDN

Fastpass

Flow
control

Flow
control

Flow
control

Endpoint

Congestion Upd.ate seineeliing Packet
routing and queue .
control forwarding
tables management
Congestion Upd.ate seineeliing Packet
routing and queue .
control forwarding
tables management
Congestion Per-packet Scheduling Packet
path and queue .
control . forwarding
selection management
Centralized Switch

Architecture

Arbiter

Timeslot
allocatio

Path

Endpoint
Host
networking
stack destination
A Y and size
FCP
client
¥ timeslots
and paths

NIC

Selection

Example: Packet from A to B

S5us A » Arbiter "A has 1 packet for B"
1-20us timeslot allocation & path selection
15pus Arbiter » A "@t=107: A~» B through R1"
no queuing A->B sends data
R1 R2

Arbitér

Timeslot Allocation

active flows last allocated

SIC dst src dst allocation srcs & dsts
45 QO O v
47 IO v
4¢ EOW m@E0 x
48 IO O v
51 EECH EERD) v

Ordering of requests used to implement policies.
E.g. LRU for max-min fairness,
lowest remaining MTUs for min-FCT

Path selection

Use edge coloring, each color denotes a path

Implementation

e Pipelined execution of tasks over multiple cores

precomputation 1 batch of timeslots

LI 1

alloc #1 [NG
alloc #2

path-sel #1
path-sel #2
path-sel #3
path-sel #4

comm #1

time —s

e (lock synchronization using PTP (achieves sub microsecond
synchronization)

e C(lient timing using hrtimers (microsecond scale precision)

Fault tolerance

* Arbiter failures
— hot backups

* Network tailures
— packet loss reports

Results:

Smaller queues, lower RTTs

¥

e .
.‘.," .

k.

4 (4351 kB)

5

D 4000 -SSRt | PO
~ ..-(*._' |". .. N 'o . 3 .
%;3000- - . ‘!“ s 4 .
].
s s
$ 2000 -
é’ fastpass .
1000 -
18 KB
4 A A A
0
1 J I
0 300 600

Time (seconds)

with iperf and pings

e fastpass
5= /
0= 1 '
0 1 2

Ping time (milliseconds)

Results:

Lesser retransmissions In production...

baseline fastpa baseline

e 6-
+w U O
g5
U'RF 0 ;
QL Yg 4-
c EQ
% 2 o |
= QO g

0= 1 1 I
0 2000 4000 6000

Time (seconds)

Each server: ~50k QPS

Results:

...But latency and throughput profiles were
barely ditferent

200 -) 450 -
baseline fastpass

Ll WS
b
.~

Py
3
1
’ .
>?’-’.“ "’.bbb J
" 2 o

service time (ms)

¢

Rack throughput
(1000s of queries per second)
< 8
I
99th percentile web request

AL
. o & Tl N -~
y Y e e

.A g N
I I ||
0 2000 4000 6000
Time (seconds)

o
ol

0 50600 100'000 15(;000
Server throughput (queries per second)

ISSUes

* Not really zero-queue — simply relocated to the
endpoints and arbiter

 How to scale”
— Several arbiters would need to cooperate
— Precise time synchronization required

 How useful Is Fastpass in practice”
— End-to-end delay at varying load
— Experimental setup had only single ToR

