Less is More: Trading a little Bandwidth for Ultra-Low Latency

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat, Masato Yasuda

Past Beliefs

- Network goodness is measured in bandwidth
 - Circuit to packet switching
 - TCP
 - Bandwidth Provisioning

This is good for throughput-oriented applications

Motivation

- Latency-sensitive applications should not be ignored
 - High frequency trading
 - High performance computing
 - Search

 How can latency-oriented and throughputoriented apps share the network?

Where is Latency an issue?

- NIC and End Hosts
 - Kernel bypass
 - Zero Copy
- Switches: Queuing Delays are still an issue

HULL: High Bandwidth Utra-Low Latency

Solution: Predict queue occupancy and prevent congestion

Result: empty queues

Queue Without HULL

How do we get empty queues?

- 1. DCTCP: Flexible response to congestion
- 2. Phantom Queue: Predict Congestion before it happens
- 3. Packet Pacing: Control burstiness

DCTCP

- Set ECN Marking threshold at switch queue
- Back off is now proportional to fraction of marked packets

% of Packets Marked	TCP	DCTCP
10%	Cuts packets sent by 50%	Cuts packets sent by 5%
60%	Cuts packets sent by 50%	Cuts packets sent by 30%

DCTCP is Better, but Insufficient

Good

- Reduces fluctuation in throughput
 - 94% vs. 75% average throughput
- This reduces latency from 10 ms to 100us

Insufficient

For our applications, we want to approach Ous latency

Issue: Detects congestion already it is already happens

Phantom Queues

- What we want: signal congestion before it occurs
- How: Keep track of the rate of a switch's queue drains

Still not good enough...

- Issue: Bursty traffic
 - Slow Start
 - NIC optimizations to reduce CPU utilization
- Why this is bad: Queue can still get congested
 - Phantom queue is marking all packets with ECN!

Packet Pacing

- Pace packets from large flows at the host
- Determine a rate R in which to emit packets

Putting it all Together

Results

What is the Innovation Here?

- AQM utilized Virtual Queues to predict congestion
- Software pacing to control burstiness
- DCTCP is not new

Tradeoff between BW and Latency

The usefulness of this design assumes this trade off is fundamental

...ls it?

What about TCP-QoS

- Already can provide ultra-low latencies and better throughput than HULL
- Argument: applications don't specify priority based on resource requirements
 - Can we just implement this at a lower level and call it a day?