Less is More: Trading a little
Bandwidth for Ultra-Low Latency

Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji
Prabhakar, Amin Vahdat,Masato Yasuda

Past Beliefs

* Network goodness is measured in bandwidth

— Circuit to packet switching
—TCP

— Bandwidth Provisioning

* This is good for throughput-oriented
applications

Motivation

* Latency-sensitive applications should not be
ighored
— High frequency trading
— High performance computing
— Search

* How can latency-oriented and throughput-
oriented apps share the network?

Where is Latency an issue?

e NIC and End Hosts

— Kernel bypass
— Zero Copy

* Switches: Queuing Delays are still an issue

HULL: High Bandwidth Utra-Low
Latency

Solution: Predict queue occupancy and prevent
congestion

Result: empty queues

Queue Without HULL Queue With HULL

How do we get empty queues?

1. DCTCP: Flexible response to congestion

. Phantom Queue: Predict Congestion before it
happens

. Packet Pacing: Control burstiness

DCTCP

* Set ECN Marking threshold at switch queue

* Back off is now proportional to fraction of
marked packets

% of Packets TCP DCTCP
Marked

10% Cuts packets sent by 50% | Cuts packets sent by 5%

60% Cuts packets sent by 50% | Cuts packets sent by 30%

DCTCP is Better, but Insufficient

Good Insufficient
* Reduces fluctuation in * For our applications, we
throughput want to approach Ous
— 94% vs. 75% average latency
throughput

e This reduces latency from
10 ms to 100us

Issue: Detects congestion already it is already happens

Phantom Queues

 What we want: signal congestion before it
occurs

* How: Keep track of the rate of a switch’s
gueue drains

SWitCh Phantom Queue

Queue drains at | W

rate C

Still not good enough...

* |ssue: Bursty traffic
— Slow Start
— NIC optimizations to reduce CPU utilization

* Why this is bad: Queue can still get congested

— Phantom queue is marking all packets with ECN!

Packet Pacing

* Pace packets from large flows at the host
e Determine a rate R in which to emit packets

Outgoing Rate

Pacer

Flow Table

Putting it all Together

I Large FIowsD Small Flows === Link (with speed C)

/ Application \

J

Host
, .
i ! ' Large \ NIC Switch
: O : Burst Pacer
] :lv]IIl\ i
! E ! 10— :|
'8! Ja' —
I I _) Empty Queue
| |
| I

\ECN Thresh

an

|
Bl g

\:

Switch Latency [us]

10000 .

—
o
o
o

100 |

10

Results

2 4 6
Number of Static Flows

8

1000 %

(0]
o
o

Throughput [Mbps]

0 2 4 6
Number of Static Flows

TCP-Droptail —+—

DCTCP-30K —<— DCTCP-PQ950-Pacer —5—

DCTCP-6K-Pacer —a—

8

What is the Innovation Here?

 AQM utilized Virtual Queues to predict
congestion

* Software pacing to control burstiness
* DCTCP is not new

Tradeoff between BW and Latency

* The usefulness of this design assumes this
trade off is fundamental

Lds it?

What about TCP-QoS

* Already can provide ultra-low latencies and
better throughput than HULL

* Argument: applications don’t specify priority
based on resource requirements

— Can we just implement this at a lower level and
call it a day?

