
pFabric: Minimal Near-Optimal Datacenter
Transport

Problem

Provide little or no queuing for short, deadline-
sensitive flows

Fully utilize the network for long flows

Approaches
•  Keep switch queues really short (1-2 packets)
–  E.g., DCTCP
–  Pro: little queuing for short flows
–  Con: hard to keep network well utilized (need pacing etc.)

•  Assign explicit rates, pause large flows for small ones
–  E.g., D3 (lacked pause), PDQ
–  Pro: works well when configured correctly
–  Con: difficult to configure, requires lots of new switch func.

Goals:
(1)  Provide little or no queuing for short, deadline-sensitive flows

(2)  Fully utilize the network for long flows

pFabric

Separate rate control from flow scheduling
 Really: leverage flow scheduling

To make short flows finish fast: prioritize them at switches

 (end-host assigns priority: # remaining packets)

To fully utilize network (but not have congestion collapse):
flows start at line-rate, throttle if they experience loss

How do switches send packets?

100 99 98 5 4 3 2

Packet with highest priority

Don’t want to starve earlier
packets from same flow!

Send earliest packet from flow with highest
priority packet

pFabric Benefits

Near-ideal flow completion times in all cases

Pretty high utilization

 Really care about bursts, pFabric does well in this case

MAYBE implementable in real switches

 Amin: why this isn’t used at the Goog

pFabric Issues

Large flows can still starve

Need to determine remaining flow size

No isolation between tenants

Maybe FCT of background flows doesn’t matter

 Only use pFabric for short flows where remaining size known?

Could we make this simpler?

What about just two priority levels?

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

No
rm

al
ize

d
FC

T

Q=2 (Optimized)
Q=4 (Optimized)
Q=8 (Optimized)
pFabric
Ideal

(a) Overall: Avg

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

No
rm

al
ize

d
FC

T

Q=2 (Optimized)
Q=4 (Optimized)
Q=8 (Optimized)
pFabric
Ideal

(b) (0, 100KB]: 99th prctile

0.2 0.4 0.6 0.80

1

2

3

4

5

Load

No
rm

al
ize

d
FC

T

Q=4 (Optimized)
Q=4 (Equal Split)
pFabric
Ideal

(c) Optimal thresholds vs equal split:
Overall Avg

Figure 17: Web search benchmark with 2, 4, and 8 priority queues. Parts (a) and (b) show the average normalized FCT across all
flows and the 99th percentile for the small flows. Part (c) compares the performance using the optimized thresholds with a heuristic
which splits the flows equally in case of 4 queues.

be appropriate. This can easily be handled by operating the pFab-
ric priority scheduling and dropping mechanisms within individual
“higher-level” traffic classes in an hierarchical fashion. Traditional
QoS mechanisms such as WRR are used to divide bandwidth be-
tween these high-level classes based on user-defined policy (e.g., a
soft-real time application is given a higher weight than batch jobs),
while pFabric provides near-optimal scheduling of individual flows
in each class according to the class’s priority scheme (remaining
flow size, deadlines, etc).

Other datacenter topologies: We have focused on Fat-tree/Clos
topologies in this paper as this is by far the most common topology
in practice. However, since conceptually we think of the fabric
as a giant switch with bottlenecks only at the ingress and egress
ports (§3) we expect our results to carry through to any reasonable
datacenter topology that provides uniform high throughput between
ingress and egress ports.

Stability: Finally, the theoretical literature has demonstrated sce-
narios where size-based traffic prioritization may reduce the stabil-
ity region of the network [20]. Here, stability is in the stochastic
sense meaning that the network may be unable to keep up with flow
arrivals even though the average load on each link is less than its
capacity [10]. However, this problem is mostly for “linear” topolo-
gies with flows traversing different numbers of hops — intuitively it
is due to the tradeoff between prioritizing small flows versus max-
imizing service parallelism on long routes. We have not seen this
issue in our study and do not expect it to be a major concern in real
datacenter environments because the number of hops is very uni-
form in datacenter fabrics, and the overall load contributed by the
small (high-priority) flows is small for realistic traffic distributions.

8. CONCLUSION
This paper decouples the key aspects of datacenter packet trans-

port — flow scheduling and rate control — and shows that by de-
signing very simple mechanisms for these goals separately we can
realize a minimalistic datacenter fabric design that achieves near-
ideal performance. Further, it shows how surprisingly, large buffers
or complex rate control are largely unnecessary in datacenters. The
next step is to integrate a prototype implementation of pFabric with
a latency-sensitive application to evaluate the impact on applica-
tion layer performance. Further, our initial investigation suggests
that further work on designing incrementally deployable solutions
based on pFabric could be fruitful. Ultimately, we believe this can
pave the path for widespread use of these ideas in practice.

Acknowledgments: We thank our shepherd, Jon Crowcroft, and
the anonymous SIGCOMM reviewers for their valuable feedback.
Mohammad Alizadeh thanks Tom Edsall for useful discussions re-
garding the practical aspects of this work.

9. REFERENCES
[1] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data center

network architecture. In Proc. of SIGCOMM, 2008.

[2] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: dynamic flow scheduling for data center networks. In Proc. of NSDI,
2010.

[3] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar,
S. Sengupta, and M. Sridharan. Data center TCP (DCTCP). In Proc. of
SIGCOMM, 2010.

[4] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and M. Yasuda.
Less is more: trading a little bandwidth for ultra-low latency in the data center.
In Proc. of NSDI, 2012.

[5] M. Alizadeh, S. Yang, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.
Deconstructing datacenter packet transport. In Proc. of HotNets, 2012.

[6] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and
S. Shenker. pFabric: Minimal Near-Optimal Datacenter Transport. http://
simula.stanford.edu/~alizade/pfabric-techreport.pdf.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Workload
analysis of a large-scale key-value store. In Proc. of SIGMETRICS, 2012.

[8] N. Bansal and M. Harchol-Balter. Analysis of SRPT scheduling: investigating
unfairness. In Proc. of SIGMETRICS, 2001.

[9] A. Bar-Noy, M. M. Halldórsson, G. Kortsarz, R. Salman, and H. Shachnai. Sum
multicoloring of graphs. J. Algorithms, 2000.

[10] T. Bonald and L. Massoulié. Impact of fairness on Internet performance. In
Proc. of SIGMETRICS, 2001.

[11] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the Impact of Packet
Spraying in Data Center Networks. In Proc. of INFOCOM, 2013.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A.
Maltz, P. Patel, and S. Sengupta. VL2: a scalable and flexible data center
network. In Proc. of SIGCOMM, 2009.

[13] D. Gross, J. F. Shortle, J. M. Thompson, and C. M. Harris. Fundamentals of
Queueing Theory. Wiley-Interscience, New York, NY, USA, 4th edition, 2008.

[14] C.-Y. Hong, M. Caesar, and P. B. Godfrey. Finishing Flows Quickly with
Preemptive Scheduling. In Proc. of SIGCOMM, 2012.

[15] The Network Simulator NS-2. http://www.isi.edu/nsnam/ns/.

[16] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Leverich, D. Mazières,
S. Mitra, A. Narayanan, D. Ongaro, G. Parulkar, M. Rosenblum, S. M. Rumble,
E. Stratmann, and R. Stutsman. The case for RAMCloud. Commun. ACM, 2011.

[17] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and M. Handley.
Improving datacenter performance and robustness with multipath TCP. In Proc.
of the SIGCOMM, 2011.

[18] B. Vamanan, J. Hasan, and T. N. Vijaykumar. Deadline-Aware Datacenter TCP
(D2TCP). In Proc. of SIGCOMM, 2012.

[19] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and B. Mueller. Safe and effective fine-grained TCP
retransmissions for datacenter communication. In Proc. of SIGCOMM, 2009.

[20] M. Verloop, S. Borst, and R. Núñez Queija. Stability of size-based scheduling
disciplines in resource-sharing networks. Perform. Eval., 62(1-4), 2005.

[21] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late:
meeting deadlines in datacenter networks. In Proc. of SIGCOMM, 2011.

[22] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. H. Katz. DeTail: Reducing the
Flow Completion Time Tail in Datacenter Networks. In Proc. of SIGCOMM,
2012.

