pFabric: Minimal Near-Optimal Datacenter
Transport




Problem

Provide little or no queuing for short, deadline-
sensitive flows

Fully utilize the network for long flows



Goals:
(1) Provide little or no queuing for short, deadline-sensitive flows
(2) Fully utilize the network for long flows

Approacnes

o Keep switch queues really short (1-2 packets)
— E.g., DCTCP
— Pro: little queuing for short flows
— Con: hard to keep network well utilized (need pacing etc.)

« Assign explicit rates, pause large flows for small ones
— E.g., D3 (lacked pause), PDQ
— Pro: works well when configured correctly
— Con: difficult to configure, requires lots of new switch func.



pFabric

Separate rate controltrom flow scheduling
Really: leverage flow scheduling

To make short flows finish fast: prioritize them at switches
(end-host assigns priority: # remaining packets)

To tully utilize network (but not have congestion collapse):
flows start at line-rate, throttle if they experience loss



How do switches send packets?

Don't want to starve earlier
packets from same flow!

2 13 9% 4 5 99 100

Packet with highest priority

Send earliest packet from flow with highest
priority packet



pFabric Benefits

Near-ideal flow completion times in all cases

Pretty high utilization
Really care about bursts, pFabric does well in this case

MAYBE implementable in real switches
Amin: why this isn't used at the Goog



pFabric Issues

Large flows can still starve
Need to determine remaining flow size
No isolation between tenants

Maybe FCT of background flows doesn’t matter
Only use pFabric for short flows where remaining size known?



Normalized FCT

[$)

N

w

\®)

Could we make this simpler?

What about just two priority levels?

-©-Q=2 (Optimized)
—+ Q=4 (Optimized)
Q=8 (Optimized)
——pFabric
- =-|deal

0.6

(a) Overall: Avg

0.2

-6-Q=2 (Optimized)
—+ Q=4 (Optimized)
4 Q=8 (Optimized)

0.4 0.6
Load

(b) (0, 100KB]: 99th prctile

0.2

0.8



