
FairCloud
Presented by 

Aishwarya Parasuram



Problem Statement
To create a mechanism of cloud sharing that:

● provides minimum bandwidth guarantees
● allocates the network proportional to payment



Why is sharing the cloud service difficult?
The network allocation of a VM (x) depends on:

● other VMs running on the same machine with x
● other VMs that x communicates with
● cross-traffic on each link used by x

Currently: 

● Cloud services are shared in a best-effort manner
● Neither tenants nor cloud-providers can reason about how network 

resources are allocated



Goals of the Paper
1. Propose a set of desirable properties for allocating network bandwidth at 

VM granularity
2. Expose fundamental trade-offs in network resource allocation
3. Show that existing policies violate one or more of the above properties
4. Propose a mechanism that can achieve a large subset of desirable 

properties, and tries to overcome trade-offs



Basic Assumptions
● IaaS model (eg: Amazon EC2)

○ Tenants pay fixed flat-rate per VM
○ Goals for network sharing are defined from a per-VM point of view

● All VMs are identical and have the same price
● Discussion is agnostic to VM placement and routing
● Orthogonal to work on network topologies aimed at improvising bisection 

bandwidth
○ possibility of congestion (and thereby the need for sharing policies) remains even in full 

bisection-bandwidth networks
○ Eg: Many-to many link in MapReduce can congest any of the links in the networks



Traditional Allocation Policies
● Per-flow mechanism

○ S-D pair can initiate more flows to get more BW



Traditional Allocation Policies
● Per-flow mechanism
● Source-Destination pair

○ Many-to-many gets more BW than one-to-one



Traditional Allocation Policies
● Per-flow mechanism
● Source-Destination pair
● Per-source / Per-Destination (Seawall, NSDI ‘11)

○ Asymmetric - application level inefficiencies
○ No link proportionality or min-guarantee



Traditional Allocation Policies
● Per-flow mechanism
● Source-Destination pair
● Per-source / Per-Destination (Seawall, NSDI ‘11)
● Static Allocation (Oktopus, Sigcomm ‘12)

IdealCongested N/W A Stops sending



Key Ideas
1. Allocate BW along congested links in proportion to the source and 

destination weights
a. not to the number of flows, sources or source-destination pairs of the tenant

2. Use VM’s proximity to a link to compute tenant’s share on that link
a. The share of a tenant on a link in a tree-based topology is computed as a function of the 

sum of VMs in the tenant’s sub-tree



Desirable Properties







Trade-Offs
1. Guaranteed BW and weight-fidelity (hard trade-off)



Trade-Offs
1. Guaranteed BW and weight-fidelity (hard trade-off)
2. Weight-fidelity and high utilization 



Proposed Allocation Policies
1. Per End-point Sharing (PES)
2. One-sided Per End-point Sharing (OSPES)



Per Endpoint Sharing (PES)



Per Endpoint Sharing (PES)
Drawback: Static Allocation, no work conservation 

Also, guaranteed minimum BW is very low.



One-sided Per Endpoint Sharing (OSPES)
● Prioritizes VMs that are close to the link
● To offer higher worst-case BW guarantee:

● Optimized for tree-topologies: (1,0)
● Option: take demand into consideration while calculating weight for 

better work utilization





Main Findings from Deployment
● Trade-off between minimum BW and proportionality is also evident at 

network level
● Relative behaviors of these policies scale to large scale clusters



Discussions
1. How important are the desirable properties? Can they be ranked? 
2. Are these the only “desirable” properties? Are there others?

Eg: Destination based sharing prevents DoS attacks
3. Is there a mapping between user-requirements and properties? Formal 

way to express requirements in terms of properties
4. Is it really necessary to design a policy that achieves ALL of the desirable 

properties? Is it practically okay to make-do with existing ones?



The End


