Oktopus: Towards Predictable Datacenter Networks

Hitesh Ballani, Paolo Costa, Thomas Karagiannis, Ant Rowstron

Presented by: Eric Tu

The Setting

- Multi-tenant datacenters: Private and Cloud
- Tenants pay as you go for compute and storage resources
- BUT: the hidden cost of the network
 - Unpredictable Application performance and tenant cost
 - network load outside tenant control
 - Limited Cloud Applicability
 - some applications can't run well: MapReduce
 - Inefficiencies in production datacenters as well
 - Hard to reason about performance -> bad productivity and revenue

The variability of network bandwidth

Figure 1: Percentiles $(1-25-50-75-99^{th})$ for intracloud network bandwidth observed by past studies.

The Goal

- Maintain simplicity between tenants and providers
- Extend relationship to include network resources
- Offer better cost vs performance options to tenants
- Everybody wins!
 - Tenants: Lower Cost, Predictable
 Performance
 - Provider: More Revenue

The Solution: Virtual Networks

- Tenants get a virtual network for all their compute instances
- Decouples tenant performance from underlying infrastructure
- No need to change application, switches, routers
- Goals:
 - Tenant Suitability: Tenants can understand application performance
 - Provider Flexibility: Maximize sharing

Two Options for Virtual Networks

- Virtual Cluster
 - Illusion of all VMs having a non-oversubscribed switch
- Virtual Oversubscribed Cluster
 - Makes use of local communication

• **Tradeoffs**: Tenant Guarantees, Tenant Cost, Provider Revenue

Virtual Cluster: No Oversubscription

- Suitable for data-intensive apps: MapReduce
- Medium Provider Flexibility
- Reliable dedicated rate similar to Amazon's running on dedicated Ethernet

Request <N, B>

Each VM can send and receive at rate B

Switch bandwidth needed = N*B

Figure 2: Virtual Cluster abstraction.

Virtual Oversubscribed Cluster

- Make use of localized traffic
- No oversubscription within group, only intergroup
- **Greater flexibility:** Limits tenant and provider costs

Request <N, S, B, O>

N VMs in groups of size S, Oversubscription factor O
Group switch bandwidth = S*B, Root switch bandwidth = N*B/O

Figure 3: Virtual Oversubscribed Cluster abstraction.

Abstraction	Max Rate	Suitable for applications	Provider Flexibility	Tenant Cost
Virtual Cluster	O(N)	All	Medium	Medium
Oversub.	O(N)	Many	High	Low
Clique	$O(N^2)$	All	Very Low	Very High

Table 1: Virtual network abstractions present a trade-off between application suitability and provider flexibility.

Oktopus Implementation

- Management Plane: Allocate VNs
 - Centralized network manager,
 - Ensures physical links connecting tenant VMs have sufficient bandwidth
- Allocation: Observation: data centers have less bw at root than edges
 - O Try to pack VMs in smallest subtree
 - Choose subtree with least amount of residual BW to accommodate future tenants
- Data Plane: Enforcing VNs
 - Rate-limiting at endhost hypervisors
 - o Each VM measures traffic, sends to centralized Controller VM that computes max-min fair share

Allocation of VMs

Figure 4: An allocation for a cluster request r: <3, 100 Mbps>. Three VMs are allocated for the tenant at the highlighted slots. The dashed edges show the tenant tree T.

Production DC Evaluation

 Lagging jobs from network performance limit throughput

Figure 7: Completion time for a batch of 10,000 tenant jobs with Baseline and with various virtual network abstractions.

Production DC Evaluation

Figure 11: Completion time with varying flow lengths. Mean BW = 500 Mbps.

Cloud Datacenters

- Arriving VM requests over time
- VM rejections: Can I fit network/comp/storage?

Figure 13: Percentage of rejected tenant requests with varying datacenter load and varying mean tenant bandwidth requirements. At load>20%, virtual networks allow more requests to be accepted.

Cloud Datacenter Cost Savings

Figure 14: Provider revenue with virtual network abstractions. Mean BW = 500Mbps.

Figure 15: Relative tenant costs based on bandwidth charging model while maintaining provider revenue neutrality.

Discussion

- Impact of physical topologies on Oktopus
 - Fat-tree topologies, need load balancing
 - Tree optimization assumption
 - Will allocation be a problem in the future?
- Fault Tolerance
 - Can support, but is it expensive to redo the virtual topology?
- Usage: Is this being used, which abstraction used?
 - O How to determine the abstraction used?