
“One Size Fits All”, The Death of
Michael Stonebreaker,   Ugur Cetintemel



This Paper
• Current state: One RDBMS does everything 

• OLAP, OLTP, ...



This Paper
• Current state: One RDBMS does everything 

• OLAP, OLTP, ...

• Existence proof that streaming implemented on top of RDBMS engine is slow. 

• Made by a company founded by both authors.



This Paper
• Current state: One RDBMS does everything 

• OLAP, OLTP, ...

• Existence proof that streaming implemented on top of RDBMS engine is slow. 

• Made by a company founded by both authors.

• Fundamentally different abstractions are needed for fast stream processing. 

• Time to specialize database engines.



Talk about three papers
• ICDE05: One Size Fits All 

• Bad for stream processing.



Talk about three papers
• ICDE05: One Size Fits All 

• Bad for stream processing.

• CIDR07: One Size Fits All - Part 2 

• Bad for text search (Google), XML, OLAP, Scientific Data



Talk about three papers
• ICDE05: One Size Fits All 

• Bad for stream processing.

• CIDR07: One Size Fits All - Part 2 

• Bad for text search (Google), XML, OLAP, Scientific Data

• VLDB07: The End of an Architectural Era 

• Bad for OLTP



Talk about three papers
• ICDE05: One Size Fits All 

• Bad for stream processing.

• CIDR07: One Size Fits All - Part 2 

• Bad for text search (Google), XML, OLAP, Scientific Data

• VLDB07: The End of an Architectural Era 

• Bad for OLTP



The academic NoSQL 
movement



What Changed (b/w 1970-2005)
• Workload: Streaming, text search, even OLTP queries 

• Different consistency requirements, different performance requirements



What Changed (b/w 1970-2005)
• Workload: Streaming, text search, even OLTP queries 

• Different consistency requirements, different performance requirements

• Memory capacity 

• Enables push based architecture, reduces time per OLTP query, etc.



What Changed (b/w 1970-2005)
• Workload: Streaming, text search, even OLTP queries 

• Different consistency requirements, different performance requirements

• Memory capacity 

• Enables push based architecture, reduces time per OLTP query, etc.

• Cluster computing 

• Transaction mechanisms, failure recovery (recover from active replica)



What gets specialized

• The query interface: windowing, OLAP differences, etc.



What gets specialized

• The query interface: windowing, OLAP differences, etc.

• The types of indices that are used.



What gets specialized

• The query interface: windowing, OLAP differences, etc.

• The types of indices that are used.

• Note: Physical plans are different but I don’t know if this is a specialization 

• Depends on query and input data source.



What gets specialized

• The query interface: windowing, OLAP differences, etc.

• The types of indices that are used.

• Note: Physical plans are different but I don’t know if this is a specialization 

• Depends on query and input data source.

• Arguably these are already specialized and different in RDBMSes today.



What changes universally?
• Support (arbitrary) stored procedures running in RDBMS process space 

• Context switch adds to latency, this is faster.



What changes universally?
• Support (arbitrary) stored procedures running in RDBMS process space 

• Context switch adds to latency, this is faster.

• Consider entire workload when optimizing query plan and data placement.



What changes universally?
• Support (arbitrary) stored procedures running in RDBMS process space 

• Context switch adds to latency, this is faster.

• Consider entire workload when optimizing query plan and data placement.

• Eliminate redo logs: recover by replication (cannot eliminate undo)



What changes universally?
• Support (arbitrary) stored procedures running in RDBMS process space 

• Context switch adds to latency, this is faster.

• Consider entire workload when optimizing query plan and data placement.

• Eliminate redo logs: recover by replication (cannot eliminate undo)

• Support different data structures and algorithms 

• E.g., partition data to avoid multi-threaded access, transaction differently.



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?

• Why did we share in the first place:



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?

• Why did we share in the first place:

• Code reuse



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?

• Why did we share in the first place:

• Code reuse

• Data reuse: similar argument to Tachyon, etc.



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?

• Why did we share in the first place:

• Code reuse

• Data reuse: similar argument to Tachyon, etc.

• Management and maintainability.



One Size Fits All...
• We need to change the architecture of databases

• But do we need to separate them out into different unrelated programs?

• Why did we share in the first place:

• Code reuse

• Data reuse: similar argument to Tachyon, etc.

• Management and maintainability.

• Economics?



What does specialization buy us anyhow

• Performance gains (how much?)



What does specialization buy us anyhow

• Performance gains (how much?)

• Simpler code (see also Unix philosophy)



What does specialization buy us anyhow

• Performance gains (how much?)

• Simpler code (see also Unix philosophy)

• But more code.



What does specialization buy us anyhow

• Performance gains (how much?)

• Simpler code (see also Unix philosophy)

• But more code.

• Pick and choose from different vendors?



What does specialization buy us anyhow

• Performance gains (how much?)

• Simpler code (see also Unix philosophy)

• But more code.

• Pick and choose from different vendors?

• I don’t know if this can realistically happen.



Where are we Today

• Where are we today: the architecture changed 

• OLAP :- Move to column stores. 

• OLTP :- SAP Hana, Hekaton, etc. (memory based) 

• All of the stuff we talked about this semester.



Final Questions

• Stored procedures: why are we giving up on isolation? 

• Should we be separating out execution engines for cluster computing 

• Remember Spark Streaming, GraphX, Naiad, ...


