
DRYAD: DISTRIBUTED DATA-
PARALLEL PROGRAMS FROM
SEQUENTIAL BUILDING BLOCKS ���

MICHAEL ISARD, MIHAI BUDIU, YUAN YU, ANDREW
BIRRELL, DENNIS FETTERLY

DRYAD GOALS
•  Research question: How to make it easier for

programmers to express parallel and distributed
program?

•  General purpose execution environment for distributed,
data-parallel applications
•  Focuses on throughput, not latency
•  Assumes secure environment, such as a private data

center
•  Automatic scheduling, distribution of data and resources,

fault tolerance

DRYAD
•  Dryad is a middleware abstraction that runs programs that

are represented as distributed execution graphs
•  Dryad receives arbitrary graphs (DAGs) from users/

programmers
•  Dryad provides mechanisms for allocating resources,

scheduling computations, fault-tolerance

DRYAD RUNTIME

At run time each channel is used to transport a finite se-
quence of structured items. This channel abstraction has
several concrete implementations that use shared memory,
TCP pipes, or files temporarily persisted in a file system.
As far as the program in each vertex is concerned, channels
produce and consume heap objects that inherit from a base
type. This means that a vertex program reads and writes its
data in the same way regardless of whether a channel seri-
alizes its data to buffers on a disk or TCP stream, or passes
object pointers directly via shared memory. The Dryad sys-
tem does not include any native data model for serializa-
tion and the concrete type of an item is left entirely up to
applications, which can supply their own serialization and
deserialization routines. This decision allows us to support
applications that operate directly on existing data includ-
ing exported SQL tables and textual log files. In practice
most applications use one of a small set of library item types
that we supply such as newline-terminated text strings and
tuples of base types.

A schematic of the Dryad system organization is shown
in Figure 1. A Dryad job is coordinated by a process called
the “job manager” (denoted JM in the figure) that runs
either within the cluster or on a user’s workstation with
network access to the cluster. The job manager contains
the application-specific code to construct the job’s commu-
nication graph along with library code to schedule the work
across the available resources. All data is sent directly be-
tween vertices and thus the job manager is only responsible
for control decisions and is not a bottleneck for any data
transfers.

Files, FIFO, Network
Job schedule Data plane

Control plane

D D DNS

V V V

JM

Figure 1: The Dryad system organization. The job manager (JM)
consults the name server (NS) to discover the list of available com-
puters. It maintains the job graph and schedules running vertices (V)
as computers become available using the daemon (D) as a proxy.
Vertices exchange data through files, TCP pipes, or shared-memory
channels. The shaded bar indicates the vertices in the job that are
currently running.

The cluster has a name server (NS) that can be used to
enumerate all the available computers. The name server
also exposes the position of each computer within the net-
work topology so that scheduling decisions can take account
of locality. There is a simple daemon (D) running on each
computer in the cluster that is responsible for creating pro-
cesses on behalf of the job manager. The first time a vertex
(V) is executed on a computer its binary is sent from the job
manager to the daemon and subsequently it is executed from
a cache. The daemon acts as a proxy so that the job man-
ager can communicate with the remote vertices and monitor
the state of the computation and how much data has been

read and written on its channels. It is straightforward to run
a name server and a set of daemons on a user workstation
to simulate a cluster and thus run an entire job locally while
debugging.

A simple task scheduler is used to queue batch jobs. We
use a distributed storage system, not described here, that
shares with the Google File System [21] the property that
large files can be broken into small pieces that are replicated
and distributed across the local disks of the cluster comput-
ers. Dryad also supports the use of NTFS for accessing files
directly on local computers, which can be convenient for
small clusters with low management overhead.

2.1 An example SQL query
In this section, we describe a concrete example of a Dryad

application that will be further developed throughout the re-
mainder of the paper. The task we have chosen is representa-
tive of a new class of eScience applications, where scientific
investigation is performed by processing large amounts of
data available in digital form [24]. The database that we
use is derived from the Sloan Digital Sky Survey (SDSS),
available online at http://skyserver.sdss.org.

We chose the most time consuming query (Q18) from a
published study based on this database [23]. The task is to
identify a “gravitational lens” effect: it finds all the objects
in the database that have neighboring objects within 30 arc
seconds such that at least one of the neighbors has a color
similar to the primary object’s color. The query can be
expressed in SQL as:

select distinct p.objID
from photoObjAll p
join neighbors n — call this join “X”
on p.objID = n.objID
and n.objID < n.neighborObjID
and p.mode = 1

join photoObjAll l — call this join “Y”
on l.objid = n.neighborObjID
and l.mode = 1
and abs((p.u-p.g)-(l.u-l.g))<0.05
and abs((p.g-p.r)-(l.g-l.r))<0.05
and abs((p.r-p.i)-(l.r-l.i))<0.05
and abs((p.i-p.z)-(l.i-l.z))<0.05

There are two tables involved. The first, photoObjAll
has 354,254,163 records, one for each identified astronomical
object, keyed by a unique identifier objID. These records
also include the object’s color, as a magnitude (logarithmic
brightness) in five bands: u, g, r, i and z. The second table,
neighbors has 2,803,165,372 records, one for each object
located within 30 arc seconds of another object. The mode
predicates in the query select only “primary” objects. The
< predicate eliminates duplication caused by the neighbors
relationship being symmetric. The output of joins “X” and
“Y” are 932,820,679 and 83,798 records respectively, and the
final hash emits 83,050 records.

The query uses only a few columns from the tables (the
complete photoObjAll table contains 2 KBytes per record).
When executed by SQLServer the query uses an index on
photoObjAll keyed by objID with additional columns for
mode, u, g, r, i and z, and an index on neighbors keyed by
objID with an additional neighborObjID column. SQL-
Server reads just these indexes, leaving the remainder of the
tables’ data resting quietly on disk. (In our experimental
setup we in fact omitted unused columns from the table, to
avoid transporting the entire multi-terabyte database across

A DRYAD JOB: DAG

Inputs

Outputs

Processing
VerticesChannels

WHY A DAG?
•  Natural “most general” design point, cycles are

problematic
•  DAG supports full relational algebra

•  Multiple inputs and outputs of different types from the
same vertex

•  More general than MR, or defined special cases, no
semantics included in the scheduler (just vertices to
schedule)

WHY A GENERAL DAG?
•  Uniform operations aren’t really uniform

•  e.g., SQL queries after dynamic optimization could look
irregular.

WHY A GENERAL DAG?
•  Uniform operations aren’t really uniform

•  e.g., SQL queries after dynamic optimization could look
irregular.

•  Non-trees are common

WHY NO CYCLE?

•  No cycles makes scheduling easy:
•  vertex can execute once all its inputs are ready
•  no deadlock

•  Fault tolerance is easy

DYNAMIC REFINEMENT
OF GRAPH
•  Application passes initial graph at start

•  Gets callbacks on interesting events
•  Graph can be modified with some restrictions

•  The job scheduler doesn’t itself do these modifications
•  The callbacks go to the application allowing such

modifications
•  So this dynamic refinement is really an extension to Dryad

STAGE MANAGER
•  Every vertex has a stage manager:

•  manages a bunch of vertices, generally grouped by
function

•  A place where execution statistics are gathered and
callbacks are received
•  request re-executions of failed tasks

•  A natural place for building models for tasks executions

CONNECTION
MANAGER
•  We can overlay a graph on the stage managers
•  Any pair of stages can be linked
•  Gets callbacks on events in upstream stage:

•  E.g., when vertices finish, new vertices get added
•  Most dynamic modifications happen here

VERTEX PROGRAM

Vertex Program

Abstract
Channels

Abstract
Channels

VERTEX PROGRAM

Abstract
Channels

Abstract
Channels

Vertex Program

Vertex
Program

Vertex
Program

Vertex
Program

Vertex
Program

Vertex
Program

SOME CASE STUDIES

•  SkyServer DB Query
•  Query Histogram Computation

SKYSERVER DB
QUERY
•  3-way join to find gravitational lens effect
•  Table U: (objId, color) 11.8GB
•  Table N: (objId, neighnorId) 41.8GB

•  Find neighboring stars with similar colors:

•  Join U and N to find T
•  T = U.color, N.neighborId where U.objId = N.objId

•  Join U and T to find, U.objId
•  U.objId where U.objId = T.neighborid and U.color = T.color

SKYSERVER DB
QUERY
•  Manually coded the SQL plan in Dryad

the country.) For the equivalent Dryad computation we ex-
tracted these indexes into two binary files, “ugriz.bin” and
“neighbors.bin,” each sorted in the same order as the in-
dexes. The “ugriz.bin” file has 36-byte records, totaling
11.8 GBytes; “neighbors.bin” has 16-byte records, total-
ing 41.8 GBytes. The output of join “X” totals 31.3 GBytes,
the output of join “Y” is 655 KBytes and the final output is
649 KBytes.

D D

MM 4n

SS 4n

YY

U U

U N U N

H

n

n

X Xn

Figure 2: The communica-
tion graph for an SQL query.
Details are in Section 2.1.

We mapped the query to
the Dryad computation shown
in Figure 2. Both data files
are partitioned into n approx-
imately equal parts (that we
call U1 through Un and N1

through Nn) by objID ranges,
and we use custom C++ item
objects for each data record
in the graph. The vertices
Xi (for 1 ≤ i ≤ n) imple-
ment join “X” by taking their
partitioned Ui and Ni inputs
and merging them (keyed on
objID and filtered by the
< expression and p.mode=1)
to produce records containing
objID, neighborObjID, and
the color columns correspond-
ing to objID. The D vertices
distribute their output records
to the M vertices, partition-
ing by neighborObjID using
a range partitioning function
four times finer than that used
for the input files. The number
four was chosen so that four
pipelines will execute in paral-
lel on each computer, because
our computers have four pro-
cessors each. The M vertices perform a non-deterministic
merge of their inputs and the S vertices sort on neigh-
borObjID using an in-memory Quicksort. The output
records from S4i−3 . . . S4i (for i = 1 through n) are fed into
Yi where they are merged with another read of Ui to im-
plement join “Y”. This join is keyed on objID (from U) =
neighborObjID (from S), and is filtered by the remainder
of the predicate, thus matching the colors. The outputs of
the Y vertices are merged into a hash table at the H vertex
to implement the distinct keyword in the query. Finally, an
enumeration of this hash table delivers the result. Later in
the paper we include more details about the implementation
of this Dryad program.

3. DESCRIBING A DRYAD GRAPH
We have designed a simple language that makes it easy

to specify commonly-occurring communication idioms. It is
currently “embedded” for convenience in C++ as a library
using a mixture of method calls and operator overloading.

Graphs are constructed by combining simpler subgraphs
using a small set of operations shown in Figure 3. All of the
operations preserve the property that the resulting graph is
acyclic. The basic object in the language is a graph:

G = ⟨VG, EG, IG, OG⟩.

G contains a sequence of vertices VG, a set of directed edges
EG, and two sets IG ⊆ VG and OG ⊆ VG that “tag” some
of the vertices as being inputs and outputs respectively. No
graph can contain a directed edge entering an input vertex
in IG, nor one leaving an output vertex in OG, and these tags
are used below in composition operations. The input and
output edges of a vertex are ordered so an edge connects
specific “ports” on a pair of vertices, and a given pair of
vertices may be connected by multiple edges.

3.1 Creating new vertices
The Dryad libraries define a C++ base class from which

all vertex programs inherit. Each such program has a tex-
tual name (which is unique within an application) and a
static “factory” that knows how to construct it. A graph
vertex is created by calling the appropriate static program
factory. Any required vertex-specific parameters can be set
at this point by calling methods on the program object.
These parameters are then marshaled along with the unique
vertex name to form a simple closure that can be sent to a
remote process for execution.

A singleton graph is generated from a vertex v as G =
⟨(v), ∅, {v}, {v}⟩. A graph can be cloned into a new graph
containing k copies of its structure using the ^ operator
where C = G^k is defined as:

C = ⟨V 1
G ⊕ · · ·⊕ V k

G , E1
G ∪ · · · ∪ Ek

G,

I1
G ∪ · · · ∪ Ik

G, O1
G ∪ · · · ∪ Ok

G⟩.

Here Gn = ⟨V n
G , En

G, In
G, On

G⟩ is a “clone” of G containing
copies of all of G’s vertices and edges, ⊕ denotes sequence
concatenation, and each cloned vertex inherits the type and
parameters of its corresponding vertex in G.

3.2 Adding graph edges
New edges are created by applying a composition opera-

tion to two existing graphs. There is a family of composi-
tions all sharing the same basic structure: C = A ◦ B creates
a new graph:

C = ⟨VA ⊕ VB, EA ∪ EB ∪ Enew, IA, OB⟩

where C contains the union of all the vertices and edges in
A and B, with A’s inputs and B’s outputs. In addition,
directed edges Enew are introduced between vertices in OA

and IB. VA and VB are enforced to be disjoint at run time,
and since A and B are both acyclic, C is also.

Compositions differ in the set of edges Enew that they add
into the graph. We define two standard compositions:

• A >= B forms a pointwise composition as shown in Fig-
ure 3(c). If |OA| ≥ |IB | then a single outgoing edge
is created from each of A’s outputs. The edges are
assigned in round-robin to B’s inputs. Some of the
vertices in IB may end up with more than one incom-
ing edge. If |IB| > |OA|, a single incoming edge is
created to each of B’s inputs, assigned in round-robin
from A’s outputs.

• A >> B forms the complete bipartite graph between
OA and IB and is shown in Figure 3(d).

We allow the user to extend the language by implementing
new composition operations.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8 10
Number of Computers

S
pe

ed
-u

p

Dryad In-Memory

Dryad Two-Pass

SQLServer 2005

Figure 8: The speedup of the SQL query computation is near-
linear in the number of computers used. The baseline is relative
to Dryad running on a single computer and times are given in Table 2.

n = 6 and up, again with close to linear speed-up, and
approximately twice as fast as the two-pass variant. The
SQLServer result matches our expectations: our special-
ized Dryad program runs significantly, but not outrageously,
faster than SQLServer’s general-purpose query engine. We
should note of course that Dryad simply provides an execu-
tion engine while the database provides much more function-
ality, including logging, transactions, and mutable relations.

6.3 Data mining
The data-mining experiment fits the pattern of map then

reduce. The purpose of running this experiment was to ver-
ify that Dryad works sufficiently well in these straightfor-
ward cases, and that it works at large scales.

The computation in this experiment reads query logs gath-
ered by the MSN Search service, extracts the query strings,
and builds a histogram of query frequency. The basic com-
munication graph is shown in Figure 9. The log files are
partitioned and replicated across the computers’ disks. The
P vertices each read their part of the log files using library
newline-delimited text items, and parse them to extract the
query strings. Subsequent items are all library tuples con-
taining a query string, a count, and a hash of the string.
Each D vertex distributes to k outputs based on the query
string hash; S performs an in-memory sort. C accumulates
total counts for each query and MS performs a streaming
merge-sort. S and MS come from a vertex library and take
a comparison function as a parameter; in this example they
sort based on the query hash. We have encapsulated the
simple vertices into subgraphs denoted by diamonds in or-
der to reduce the total number of vertices in the job (and
hence the overhead associated with process start-up) and
the volume of temporary data written to disk.

The graph shown in Figure 9 does not scale well to very
large datasets. It is wasteful to execute a separate Q vertex
for every input partition. Each partition is only around
100 MBytes, and the P vertex performs a substantial data
reduction, so the amount of data which needs to be sorted
by the S vertices is very much less than the total RAM on
a computer. Also, each R subgraph has n inputs, and when
n grows to hundreds of thousands of partitions, it becomes
unwieldy to read in parallel from so many channels.

Q Q

R

Q

R k

k

k

n

n

is:Each

R

is:

Each

MS

C

P

C

S

C

S

D

Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn’t scale well.

After trying a number of different encapsulation and dy-
namic refinement schemes we arrived at the communication
graphs shown in Figure 10 for our experiment. Each sub-
graph in the first phase now has multiple inputs, grouped
automatically using the refinement in Figure 7 to ensure
they all lie on the same computer. The inputs are sent to
the parser P through a non-deterministic merge vertex M .
The distribution (vertex D) has been taken out of the first
phase to allow another layer of grouping and aggregation
(again using the refinement in Figure 7) before the explo-
sion in the number of output channels.

We ran this experiment on 10,160,519,065,748 Bytes of in-
put data in a cluster of around 1800 computers embedded
in a data center. The input was divided into 99,713 parti-
tions replicated across the computers, and we specified that
the application should use 450 R subgraphs. The first phase
grouped the inputs into at most 1GBytes at a time, all ly-
ing on the same computer, resulting in 10,405 Q′ subgraphs
that wrote a total of 153,703,445,725 Bytes. The outputs
from the Q′ subgraphs were then grouped into sets of at
most 600 MBytes on the same local switch resulting in 217
T subgraphs. Each T was connected to every R subgraph,
and they wrote a total of 118,364,131,628 Bytes. The to-
tal output from the R subgraphs was 33,375,616,713 Bytes,
and the end-to-end computation took 11 minutes and 30
seconds. Though this experiment only uses 11,072 vertices,
intermediate experiments with other graph topologies con-
firmed that Dryad can successfully execute jobs containing
hundreds of thousands of vertices.

We would like to emphasize several points about the op-
timization process we used to arrive at the graphs in Fig-
ure 10:

1. At no point during the optimization did we have to
modify any of the code running inside the vertices:
we were simply manipulating the graph of the job’s
communication flow, changing tens of lines of code.

2. This communication graph is well suited to any map-
reduce computation with similar characteristics: i.e.
that the map phase (our P vertex) performs substan-

Optimizations done do not need any code
changes, only graph manipulations!

QUERY HISTOGRAM
COMPUTATION

•  Input: Log file (n partitions)
•  Extract queries from log partitions
•  Re-partition by hash of query (k buckets)

•  Compute histogram within each bucket

HISTOGRAM COMPUTATION:
NAÏVE TOPOLOGY

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

0 2 4 6 8 10
Number of Computers

S
pe

ed
-u

p

Dryad In-Memory

Dryad Two-Pass

SQLServer 2005

Figure 8: The speedup of the SQL query computation is near-
linear in the number of computers used. The baseline is relative
to Dryad running on a single computer and times are given in Table 2.

n = 6 and up, again with close to linear speed-up, and
approximately twice as fast as the two-pass variant. The
SQLServer result matches our expectations: our special-
ized Dryad program runs significantly, but not outrageously,
faster than SQLServer’s general-purpose query engine. We
should note of course that Dryad simply provides an execu-
tion engine while the database provides much more function-
ality, including logging, transactions, and mutable relations.

6.3 Data mining
The data-mining experiment fits the pattern of map then

reduce. The purpose of running this experiment was to ver-
ify that Dryad works sufficiently well in these straightfor-
ward cases, and that it works at large scales.

The computation in this experiment reads query logs gath-
ered by the MSN Search service, extracts the query strings,
and builds a histogram of query frequency. The basic com-
munication graph is shown in Figure 9. The log files are
partitioned and replicated across the computers’ disks. The
P vertices each read their part of the log files using library
newline-delimited text items, and parse them to extract the
query strings. Subsequent items are all library tuples con-
taining a query string, a count, and a hash of the string.
Each D vertex distributes to k outputs based on the query
string hash; S performs an in-memory sort. C accumulates
total counts for each query and MS performs a streaming
merge-sort. S and MS come from a vertex library and take
a comparison function as a parameter; in this example they
sort based on the query hash. We have encapsulated the
simple vertices into subgraphs denoted by diamonds in or-
der to reduce the total number of vertices in the job (and
hence the overhead associated with process start-up) and
the volume of temporary data written to disk.

The graph shown in Figure 9 does not scale well to very
large datasets. It is wasteful to execute a separate Q vertex
for every input partition. Each partition is only around
100 MBytes, and the P vertex performs a substantial data
reduction, so the amount of data which needs to be sorted
by the S vertices is very much less than the total RAM on
a computer. Also, each R subgraph has n inputs, and when
n grows to hundreds of thousands of partitions, it becomes
unwieldy to read in parallel from so many channels.

Q Q

R

Q

R k

k

k

n

n

is:Each

R

is:

Each

MS

C

P

C

S

C

S

D

Figure 9: The communication graph to compute a query his-
togram. Details are in Section 6.3. This figure shows the first cut
“naive” encapsulated version that doesn’t scale well.

After trying a number of different encapsulation and dy-
namic refinement schemes we arrived at the communication
graphs shown in Figure 10 for our experiment. Each sub-
graph in the first phase now has multiple inputs, grouped
automatically using the refinement in Figure 7 to ensure
they all lie on the same computer. The inputs are sent to
the parser P through a non-deterministic merge vertex M .
The distribution (vertex D) has been taken out of the first
phase to allow another layer of grouping and aggregation
(again using the refinement in Figure 7) before the explo-
sion in the number of output channels.

We ran this experiment on 10,160,519,065,748 Bytes of in-
put data in a cluster of around 1800 computers embedded
in a data center. The input was divided into 99,713 parti-
tions replicated across the computers, and we specified that
the application should use 450 R subgraphs. The first phase
grouped the inputs into at most 1GBytes at a time, all ly-
ing on the same computer, resulting in 10,405 Q′ subgraphs
that wrote a total of 153,703,445,725 Bytes. The outputs
from the Q′ subgraphs were then grouped into sets of at
most 600 MBytes on the same local switch resulting in 217
T subgraphs. Each T was connected to every R subgraph,
and they wrote a total of 118,364,131,628 Bytes. The to-
tal output from the R subgraphs was 33,375,616,713 Bytes,
and the end-to-end computation took 11 minutes and 30
seconds. Though this experiment only uses 11,072 vertices,
intermediate experiments with other graph topologies con-
firmed that Dryad can successfully execute jobs containing
hundreds of thousands of vertices.

We would like to emphasize several points about the op-
timization process we used to arrive at the graphs in Fig-
ure 10:

1. At no point during the optimization did we have to
modify any of the code running inside the vertices:
we were simply manipulating the graph of the job’s
communication flow, changing tens of lines of code.

2. This communication graph is well suited to any map-
reduce computation with similar characteristics: i.e.
that the map phase (our P vertex) performs substan-

P: Parse lines
D: Hash Distribute
S: Quicksort

C: Count
occurrences
MS: Merge Sort

HISTOGRAM COMPUTATION:
EFFICIENT TOPOLOGY

Q' Q'

R

Q'

R 450

TT 217

450

10,405

99,713

is:Each

R

is:

Each

MS

C

T

is:

Each

MS

D

C

M

P

C

S

Q'

RR 450

T

450

99,713

33.4 GB

118 GB

154 GB

10.2 TB

a b

Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q′ vertex may receive up to 1GB of input while each T may receive up
to 600MB. The number of Q′ and T vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

tial data reduction and the reduce phase (our C vertex)
performs some additional relatively minor data reduc-
tion. A different topology might give better perfor-
mance for a map-reduce task with different behavior;
for example if the reduce phase performed substantial
data reduction a dynamic merge tree as described in
Figure 6 might be more suitable.

3. When scaling up another order of magnitude or two,
we might change the topology again, e.g. by adding
more layers of aggregation between the T and R stages.
Such re-factoring is easy to do.

4. Getting good performance for large-scale data-mining
computations is not trivial. Many novel features of the
Dryad system, including subgraph encapsulation and
dynamic refinement, were used. These made it simple
to experiment with different optimization schemes that
would have been difficult or impossible to implement
using a simpler but less powerful system.

7. BUILDING ON DRYAD
As explained in the introduction, we have targeted Dryad

at developers who are experienced at using high-level com-
piled programming languages. In some domains there may
be great value in making common large-scale data process-
ing tasks easier to perform, since this allows non-developers
to directly query the data store [33]. We designed Dryad to
be usable as a platform on which to develop such more re-
stricted but simpler programming interfaces, and two other
groups within Microsoft have already prototyped systems to
address particular application domains.

7.1 The “Nebula” scripting language
One team has layered a scripting interface on top of Dryad.

It allows a user to specify a computation as a series of stages
(corresponding to the Dryad stages described in Section 3.6),

each taking inputs from one or more previous stages or the
file system. Nebula transforms Dryad into a generalization
of the Unix piping mechanism and it allows programmers to
write giant acyclic graphs spanning many computers. Often
a Nebula script only refers to existing executables such as
perl or grep, allowing a user to write an entire complex dis-
tributed application without compiling any code. The Neb-
ula layer on top of Dryad, together with some perl wrap-
per functions, has proved to be very successful for large-
scale text processing, with a low barrier to entry for users.
Scripts typically run on thousands of computers and contain
5–15 stages including multiple projections, aggregations and
joins, often combining the information from multiple input
sets in sophisticated ways.

Nebula hides most of the details of the Dryad program
from the developer. Stages are connected to preceding stages
using operators that implicitly determine the number of ver-
tices required. For example, a “Filter” operation creates one
new vertex for every vertex in its input list, and connects
them pointwise to form a pipeline. An “Aggregate” opera-
tion can be used to perform exchanges and merges. The im-
plementation of the Nebula operators makes use of dynamic
optimizations like those described in Section 5.2 however
the operator abstraction allows users to remain unaware of
the details of these optimizations. All Nebula vertices exe-
cute the process wrapper described in Section 4.2, and the
vertices in a given stage all run the same executable and
command-line, specified using the script. The Nebula sys-
tem defines conventions for passing the names of the input
and output pipes to the vertex executable command-line.

There is a very popular “front-end” to Nebula that lets
the user describe a job using a combination of: fragments of
perl that parse lines of text from different sources into struc-
tured records; and a relational query over those structured
records expressed in a subset of SQL that includes select,
project and join. This job description is converted into
a Nebula script and executed using Dryad. The perl pars-

P: Parse lines
D: Hash Distribute
S: Quicksort

C: Count
occurrences
MS: Merge Sort

M: Non-
deterministic
Merge

Q’

T

R R R

Q’

T

R R R

Q’Q’

Q’

T

R R R

Q’Q’

T

FINAL HISTOGRAM REFINEMENT

Q' Q'

R

Q'

R 450

TT 217

450

10,405

99,713

is:Each

R

is:

Each

MS

C

T

is:

Each

MS

D

C

M

P

C

S

Q'

RR 450

T

450

99,713

33.4 GB

118 GB

154 GB

10.2 TB

a b

Figure 10: Rearranging the vertices gives better scaling performance compared with Figure 9. The user supplies graph (a) specifying that
450 buckets should be used when distributing the output, and that each Q′ vertex may receive up to 1GB of input while each T may receive up
to 600MB. The number of Q′ and T vertices is determined at run time based on the number of partitions in the input and the network locations
and output sizes of preceding vertices in the graph, and the refined graph (b) is executed by the system. Details are in Section 6.3.

tial data reduction and the reduce phase (our C vertex)
performs some additional relatively minor data reduc-
tion. A different topology might give better perfor-
mance for a map-reduce task with different behavior;
for example if the reduce phase performed substantial
data reduction a dynamic merge tree as described in
Figure 6 might be more suitable.

3. When scaling up another order of magnitude or two,
we might change the topology again, e.g. by adding
more layers of aggregation between the T and R stages.
Such re-factoring is easy to do.

4. Getting good performance for large-scale data-mining
computations is not trivial. Many novel features of the
Dryad system, including subgraph encapsulation and
dynamic refinement, were used. These made it simple
to experiment with different optimization schemes that
would have been difficult or impossible to implement
using a simpler but less powerful system.

7. BUILDING ON DRYAD
As explained in the introduction, we have targeted Dryad

at developers who are experienced at using high-level com-
piled programming languages. In some domains there may
be great value in making common large-scale data process-
ing tasks easier to perform, since this allows non-developers
to directly query the data store [33]. We designed Dryad to
be usable as a platform on which to develop such more re-
stricted but simpler programming interfaces, and two other
groups within Microsoft have already prototyped systems to
address particular application domains.

7.1 The “Nebula” scripting language
One team has layered a scripting interface on top of Dryad.

It allows a user to specify a computation as a series of stages
(corresponding to the Dryad stages described in Section 3.6),

each taking inputs from one or more previous stages or the
file system. Nebula transforms Dryad into a generalization
of the Unix piping mechanism and it allows programmers to
write giant acyclic graphs spanning many computers. Often
a Nebula script only refers to existing executables such as
perl or grep, allowing a user to write an entire complex dis-
tributed application without compiling any code. The Neb-
ula layer on top of Dryad, together with some perl wrap-
per functions, has proved to be very successful for large-
scale text processing, with a low barrier to entry for users.
Scripts typically run on thousands of computers and contain
5–15 stages including multiple projections, aggregations and
joins, often combining the information from multiple input
sets in sophisticated ways.

Nebula hides most of the details of the Dryad program
from the developer. Stages are connected to preceding stages
using operators that implicitly determine the number of ver-
tices required. For example, a “Filter” operation creates one
new vertex for every vertex in its input list, and connects
them pointwise to form a pipeline. An “Aggregate” opera-
tion can be used to perform exchanges and merges. The im-
plementation of the Nebula operators makes use of dynamic
optimizations like those described in Section 5.2 however
the operator abstraction allows users to remain unaware of
the details of these optimizations. All Nebula vertices exe-
cute the process wrapper described in Section 4.2, and the
vertices in a given stage all run the same executable and
command-line, specified using the script. The Nebula sys-
tem defines conventions for passing the names of the input
and output pipes to the vertex executable command-line.

There is a very popular “front-end” to Nebula that lets
the user describe a job using a combination of: fragments of
perl that parse lines of text from different sources into struc-
tured records; and a relational query over those structured
records expressed in a subset of SQL that includes select,
project and join. This job description is converted into
a Nebula script and executed using Dryad. The perl pars-

OPTIMIZING DRYAD APPLICATIONS
•  Application code is NOT modified

•  Only graph manipulations
•  Users need to provide the vertex programs and the initial

graph
•  Then the system optimizes it further, statically and

dynamically

SMALL VS LARGE CLUSTERS

•  Small private clusters
•  Few failures, known resources
ü  Can use these sophisticated Dryad features

•  Large public clusters

•  Unknown resources, failures
Ø  May not be able to use lot of the graph manipulation

features as much

HIGHER-LEVEL PROGRAMMING
MODELS
•  SSIS:

•  SQLServer workflow engine, distributed
•  Simplified SQL:

•  Perl with a few SQL like operations
•  DryadLINQ

•  Relational queries integrated in C#
•  a front end for Dryad jobs

