DRYAD: DISTRIBUTED DATA-
PARALLEL PROGRAMS FROM
SEQUENTIAL BUILDING BLOCKS

MICHAEL ISARD, MIHAI BUDIU, YUAN YU, ANDREW
BIRRELL, DENNIS FETTERLY



DRYAD GOALS

 Research question: How to make it easier for
programmers to express parallel and distributed
program?

 General purpose execution environment for distributed,
data-parallel applications

- Focuses on throughput, not latency
« Assumes secure environment, such as a private data
center

« Automatic scheduling, distribution of data and resources,
fault tolerance



DRYAD

 Dryad is a middleware abstraction that runs programs that
are represented as distributed execution graphs

 Dryad receives arbitrary graphs (DAGs) from users/
programmers

* Dryad provides mechanisms for allocating resources,
scheduling computations, fault-tolerance



DRYAD RUNTIME

Job schedule Data plane

0000 g Files, FIFO, Network

T

T

Control plane




A DRYAD JOB: DAG

T~ Outputs

Q ‘ < Processing

Vertices

Channels
~

Inputs
«—




WHY A DAG?

« Natural “most general” design point, cycles are
problematic

 DAG supports full relational algebra

« Multiple inputs and outputs of different types from the
same vertex

« More general than MR, or defined special cases, no
semantics included in the scheduler (just vertices to
schedule)



WHY A GENERAL DAG?

Uniform operations aren’t really uniform

e.g., SQL queries after dynamic optimization could look

irregular.

O O 000 C



WHY A GENERAL DAG?

Uniform operations aren’t really uniform

e.g., SQL queries after dynamic optimization could look
irregular.

Non-trees are common



WHY NO CYCLE?

* No cycles makes scheduling easy:

* vertex can execute once all its inputs are ready
* no deadlock
* Fault tolerance is easy



DYNAMIC REFINEMENT
OF GRAPH

« Application passes initial graph at start

Gets callbacks on interesting events

 Graph can be modified with some restrictions

The job scheduler doesn't itself do these modifications

The callbacks go to the application allowing such
modifications

So this dynamic refinement is really an extension to Dryad



STAGE MANAGER

 Every vertex has a stage manager:
* manages a bunch of vertices, generally grouped by
function

« A place where execution statistics are gathered and
callbacks are received

* request re-executions of failed tasks
« A natural place for building models for tasks executions



CONNECTION
MANAGER

« We can overlay a graph on the stage managers
« Any pair of stages can be linked
* Gets callbacks on events in upstream stage:

- E.g., when vertices finish, new vertices get added
 Most dynamic modifications happen here



VERTEX PROGRAM

Abstract Abstract
Channels Channels

Vertex Program




VERTEX PROGRAM

Abstract /4005 Program Abstract
Channels Channels

—~ Vertex

Program

Vertex

Program

Program




SOME CASE STUDIES

« SkyServer DB Query

* Query Histogram Computation



SKYSERVER DB
QUERY

- 3-way join to find gravitational lens effect
- Table U: (objld, color) 11.8GB

« Table N: (objld, neighnorid) 41.8GB

* Find neighboring stars with similar colors:

 JoinUandNtofind T
T = U.color, N.neighborld where U.objld = N.objld

- Join U and T to find, U.objld
U.objld where U.objld = T.neighborid and U.color = T.color



SKYSERVER DB
QUERY

 Manually coded the SQL plan in Dryad

Figure 2: The communica-
tion graph for an SQL query.



Speed-up

16.0

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

—&— Dryad In-Memory
—=®— Dryad Two-Pass
—&— SQLServer 2005

e
.
/-/'

e

/

,/'

2

4 6 8
Number of Computers

10




Optimizations done do not need any code
changes, only graph manipulations!



QUERY HISTOGRAM
COMPUTATION

Input: Log file (n partitions)
Extract queries from log partitions
Re-partition by hash of query (k buckets)

Compute histogram within each bucket



HISTOGRAM COMPUTATION:
NAIVE TOPOLOGY

P: Parse lines
D: Hash Distribute
S: Quicksort ko

C: Count
occurrences

MS: Merge Sort

Each

@

IS:

(§ror




HISTOGRAM COMPUTATION:
EFFICIENT TOPOLOGY

m
>

. : a

P:Parselines &= 450 Each o
D: Hash Distribute
S: Quicksort

R A0 R @ Each
C: Count
occurrences ®
MS: Merge Sort T is:
M: Non-
deterministic @
Merge Q'

99713 @ @é

oo =@













FINAL HISTOGRAM REFINEMENT

33.4 GB




OPTIMIZING DRYAD APPLICATIONS

« Application code is NOT modified

Only graph manipulations
Users need to provide the vertex programs and the initial
graph

« Then the system optimizes it further, statically and
dynamically



SMALL VS LARGE CLUSTERS

« Small private clusters

 Few failures, known resources
v Can use these sophisticated Dryad features

« Large public clusters

 Unknown resources, failures

» May not be able to use lot of the graph manipulation
features as much



HIGHER-LEVEL PROGRAMMING
MODELS

SSIS:

SQLServer workflow engine, distributed
Simplified SQL.:

Perl with a few SQL like operations
DryadLINQ

Relational queries integrated in C#
a front end for Dryad jobs



