Forward Error Correction in Sensor Networks

Jaein Jeong, Cheng-Tien Ee

University of California, Berkeley
Motivation

• Packet errors occur in WSN.
 – Error recovery is required for correct delivery.

• Questions.
 – What kinds of error recovery method?
 – What level of error recovery capability?
Two methods for error recovery

- **ARQ (Automatic Repeat reQuest)**

 - A sends, and B acks.

![Diagram showing data and ack between A and B]
Two methods for error recovery

- **ARQ (Automatic Repeat reQuest)**
 - A sends, and B acks.
 - A sends, B misses, and A resends.
 - A sends, B misses, and A resends.
Two methods for error recovery

• ARQ (Automatic Repeat reQuest)

 – A sends, and B acks.

 ![Data transmission diagram](image)

 – A sends, B misses, and A resends.

 ![Retransmission diagram](image)

 – TX cost increases with (#-nodes, #-TX).
Two methods for error recovery

- FEC (Forward Error Correction)
 - A sends data with error correction code (ECC).
Two methods for error recovery

- **FEC (Forward Error Correction)**
 - A sends data with error correction code (ECC).
 - Preferable in broadcast and multi-hop network.
Two methods for error recovery

- **FEC (Forward Error Correction)**
 - A sends data with error correction code (ECC).
 - Preferable in broadcast and multi-hop network.
 - We focus on FEC for WSN.
Choosing Right ECC for WSN

- Preliminary Experiment
 - Most packet errors are 1-bit or 2-bit.

Graph of Frequency Against Burst Error Length (Bits) Per 10000 Packets

- 2.1 m
- 10.3 m
- 20.6 m
- 41.1 m
Choosing Right ECC for WSN

• Preliminary Experiment
 – Most packet errors are 1-bit or 2-bit.

![Graph of Frequency Against Burst Error Length (Bits) Per 10000 Packets]

• Our approach: 1-bit & 2-bit ECC for WSN.
Organization

- Background
- Theory
- Implementation
- Experiment
- Conclusion
Organization

• Background
 – Reed-Solomon, LT-code, 1-bit ECC.

• Theory

• Implementation

• Experiment

• Conclusion
Organization

• Background
 – Reed-Solomon, LT-code, 1-bit ECC.

• Theory
 – Linear block code, 1-bit & 2-bit ECC.

• Implementation

• Experiment

• Conclusion
Organization

- **Background**
 - Reed-Solomon, LT-code, 1-bit ECC.

- **Theory**
 - Linear block code, 1-bit & 2-bit ECC.

- **Implementation**
 - ECC implementation for Mica2dot w. CC1000.

- **Experiment**

- **Conclusion**
Organization

• **Background**
 – Reed-Solomon, LT-code, 1-bit ECC.

• **Theory**
 – Linear block code, 1-bit & 2-bit ECC.

• **Implementation**
 – ECC implementation for Mica2dot w. CC1000.

• **Experiment**
 – Outdoor & indoor tests for several ECC.

• **Conclusion**
Background

- **Reed-Solomon code, LT code**
 - Better error-correction capability.
 - Complex computation, larger memory space.
Background

• Reed-Solomon code, LT code
 – Better error-correction capability.
 – Complex computation, larger memory space.

• 1-bit ECC code for Mica (RFM TR1000)
 – Handles both 1-bit ECC & DC-balancing.
 – Not efficient for radio that already supports DC-balancing (e.g. CC1000).
Theory

- Based on linear block code over GF(2).

Message: u
- Encoding
 - Encoded message: $v = uG$
- Modulation
- Noise
- Channel
- Received message: r

Syndrome: $s = rH^T$
- Decoding
 - Decoded message: u'
- Demodulation
Theory

• Encoding:
 – Encodes k-bit msg u to (k+r)-bit codeword v.
 – $v = uG$ (u: msg, G: generator)
Theory

• **Encoding:**
 – Encodes k-bit msg \(u \) to (k+r)-bit codeword \(v \).
 – \(v = uG \) (\(u \): msg, \(G \): generator)

• **Decoding:**
 – Decodes (k+r)-bit received data \(r \) into k-bit data \(u' \).
 – Calculates syndrome \(s = rH^T \) (\(r \): received msg, \(H \): parity) for locating bit errors.
Theory

• Locating bit errors:
 - \(s = rH^T = (v + e)H^T = uGH^T + eH^T = eH^T \)
 - \(GH^T = [I_k : C][C^T : I_r]^T = C + C = 0 \)
 - Any non-zero syndrome \(s \) implies an error.
Theory

- **Locating bit errors:**

 \[s = rH^T = (v + e)H^T = uGH^T + eH^T = eH^T \]

 \[GH^T = [I_k : C][C^T : I_r]^T = C + C = 0 \]

 - Any non-zero syndrome \(s \) implies an error.

- **Correcting bit errors:**

 - If \(s \) matches \(i \)-th column of \(H \), invert \(i \)-th bit of \(r \).

 - Otherwise, bit error is not correctable.
Odd-weight-column code

• Odd-weight-column code is SECDED.

• **Ex: odd-weight-column w. k = 8, r = 5.**

\[
G = [I_8 : C] = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]

\[
H = [C^T : I_5] = \begin{bmatrix}
0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\
\end{bmatrix}
\]
Odd-weight-column code

- **Encoding:** let message $u = [0100 \ 0010]$
 - Then, codeword $v = uG = [0100 \ 0010 \ 10111]$
Odd-weight-column code

• **Encoding:** let message \(u = [0100 \ 0010] \)
 – Then, codeword \(v = uG = [0100 \ 0010 \ 10111] \)

• **TX error:** suppose 2\(^{nd}\) bit of \(v \) is inverted.
 – Received bits \(v' = [0000 \ 0010 \ 10111] \)

\[
s = v' H^T = [01011]
\]
Odd-weight-column code

• **Encoding:** let message \(u = [0100 \ 0010] \)

 – Then, codeword \(v = uG = [0100 \ 0010 \ 10111] \)

• **TX error:** suppose 2\(^{nd}\) bit of \(v \) is inverted.

 – Received bits \(v' = [0000 \ 0010 \ 10111] \)

• **Detecting error:** \(s = v' H^T = [01011] \)

 – \(s \) matches 2\(^{nd}\) column of \(H \Rightarrow 2^{nd} \) bit of \(v \) inverted.

\[
H = [C^T : I_5] = \\
\begin{bmatrix}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
\end{bmatrix}
\]
Odd-weight-column code

• Error correction:
 - Calculating correct codeword.

 \[\nu = \nu' + [0100 0000 00000] \]

 \[= [0000 0010 10111] + [0100 0000 00000] \]

 \[= [0100 0010 10111] \]
Odd-weight-column code

• Error correction:
 – Calculating correct codeword.
 \[v = v' + [0100 \ 0000 \ 00000] \]
 \[= [0000 \ 0010 \ 10111] + [0100 \ 0000 \ 00000] \]
 \[= [0100 \ 0010 \ 10111] \]
 – Since first k-columns of G is identity matrix,
 \[uG = [0100 \ 0010 \ 10111] \]
 \[u = [0100 \ 0010] \]
Double-bit error correction code

• Used (16,8) systematic, quasi-cyclic code.
 – Can correct 2-bit error and detect 3-bit error (DECTED).
Double-bit error correction code

- Used (16,8) systematic, quasi-cyclic code.
 - Can correct 2-bit error and detect 3-bit error (DECTED).
 - Similar to SECDED except decoding.
 - If syndrome s matches i^{th} column of H, invert i^{th} bit of r.
 - If s matches sum of i^{th} column of H and j^{th} column of H, invert i^{th} and j^{th} bits of r.
 - Otherwise, bit error is not correctable.
Double-bit error correction code

• **Encoding**: let message \(u = [0100 \ 0010] \)

 − Then, codeword \(v = uG = [0100 \ 0010 \ 1001 \ 1100] \)
Double-bit error correction code

- **Encoding:** let message $u = [0100 \ 0010]$
 - Then, codeword $v = uG = [0100 \ 0010 \ 1001 \ 1100]$

- **TX error:** 2nd & 3rd bits of v are inverted.
 - Received bits $v' = [0010 \ 0010 \ 1001 \ 1100]$
Double-bit error correction code

- **Encoding:** let message $u = [0100 \ 0010]$
 - Then, codeword $v = uG = [0100 \ 0010 \ 1001 \ 1100]$
- **TX error:** 2nd & 3rd bits of v are inverted.
 - Received bits $v' = [0010 \ 0010 \ 1001 \ 1100]$
- **Detecting error:** $s = v'H^T = [1010 \ 1111]$

$$H = [C^T : I_8] = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix}$$
Implementation

- Platform: Mica2dot with CC1000 radio.
Implementation

• Platform: Mica2dot with CC1000 radio.

• Three versions of ECC (1-bit & 2-bit)
 – SECDEC (13, 8) : 8-bit data, 13-bit codeword
 – SECDED (30, 24) : 24-bit data, 30-bit codeword
 – DECTED (16, 8) : 8-bit data, 16-bit codeword
Implementation

• Platform: Mica2dot with CC1000 radio.
• Three versions of ECC (1-bit & 2-bit)
 – SECDEC (13, 8) : 8-bit data, 13-bit codeword
 – SECDED (30, 24) : 24-bit data, 30-bit codeword
 – DECTED (16, 8) : 8-bit data, 16-bit codeword
• Implemented within MAC layer providing transparent packet interface.
Implementation

- Platform: Mica2dot with CC1000 radio.
- Three versions of ECC (1-bit & 2-bit)
 - SECDEC (13, 8) : 8-bit data, 13-bit codeword
 - SECDED (30, 24) : 24-bit data, 30-bit codeword
 - DECTED (16, 8) : 8-bit data, 16-bit codeword
- Implemented within MAC layer providing transparent packet interface.
- Lookup table of H for faster decoding.
Implementation

- **Overhead in bytes to transmit due to ECC.**
 - Assumes 20-byte preamble & 36-byte payload.

\[
r_{ec} = \frac{\text{Bytes to be sent}}{\text{Bytes to be encoded}}
\]

<table>
<thead>
<tr>
<th></th>
<th>SECDED (8,13)</th>
<th>SECDED (30,24)</th>
<th>DECTED (16,8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(r_{ec})</td>
<td>2byte / 1byte</td>
<td>4byte / 3byte</td>
<td>2byte / 1byte</td>
</tr>
<tr>
<td>Overhead</td>
<td>64.3%</td>
<td>21.4%</td>
<td>64.3%</td>
</tr>
</tbody>
</table>
Experimental Setup

• Four versions of ECC MAC were tested
 – NO FEC
 – SECDED(13,8)
 – SECDED(30,24)
 – DECTED(16,8)

• TX node sends a packet 5,000 times.
• Received data is logged for analysis.
Experimental Setup

• Outdoor test
 – Sender / receiver were 183m apart L.O.S.

• Indoor test
 – Four different sender locations in Cory Hall.
Result (Packet Drop)

• Our ECC implementation reduces packet error rate (PER), but it has limitations.
Result (Packet Drop)

- Our ECC implementation reduces packet error rate (PER), but it has imitations.
- Outdoor: ECC reduces PER to zero.

![Packet drop rate for different causes (outdoor)](image-url)
Result (Packet Drop)

- **Indoor:** PER > 0 due to multiple-bit errors.
Comparison among ECC schemes

Packet drop rate for different causes (Indoor Location 4)
Comparison among ECC schemes

- **SECDED (13,8)** has smallest packet drop.
 - SECDED (30,24) is weaker than SECDED(13,8) although more space-saving.

![Packet drop rate for different causes (Indoor Location 4)](image-url)
Comparison among ECC schemes

- SECDED (13,8) has smallest packet drop.
 - SECDED (30,24) is weaker than SECDED(13,8) although more space-saving.

Packet drop rate for different causes (Indoor Location 4)
Comparison among ECC schemes

• **SECDED (13,8)** has smallest packet drop.
 – SECDED (30,24) is weaker than SECDED(13,8) although more space-saving.

• **DECTED(16,8)** is no better than SECDEC (13,8).
 – Most errors are single-bit or multiple-bit.

![Packet drop rate for different causes (Indoor Location 4)](image_url)
Comparison among ECC schemes

- **SECDED (13,8) has smallest packet drop.**
 - SECDED (30,24) is weaker than SECDED(13,8) although more space-saving.

- **DECTED(16,8) is no better than SECDEC (13,8).**
 - Most errors are single-bit or multiple-bit.
Burst bit errors & packet losses

- Burst bit errors happen, but frequency of multiple packet drops is low.
 - A few retransmissions would be enough.
Conclusion

• A few versions of 1-bit & 2-bit ECC were implemented and tested on CC1000.

• ECC reduces packet drop rate, but not effective under burst bit errors.

• Under burst bit errors, a few re-TX can be used to further reduce packet drop rate.