
ICAPS ‘08

Angelic Hierarchical Planning:
Optimal and Online Algorithms

Bhaskara Marthi
MIT/Willow Garage

bhaskara@csail.mit.edu

Stuart Russell
UC Berkeley

russell@cs.berkeley.edu

1

Jason Wolfe
UC Berkeley

jawolfe@cs.berkeley.edu

High-Level Actions (HLAs)

• Here, a high-level action (HLA) =
 a set of allowed immediate refinements:
• each is a sequence of actions
• may have associated preconditions

• Almost all actions we think about are high-level
• Plan a trip
• Vacuum the house
• Go to work

[Go(work)]

[GetIn(car), Drive(work), GetOut(car)] [Walk(stop), Bus(work)]

2

 if ¬Raining

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

Kc3 Rxa1

Qa4 c2 c2 Kxa1

3

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

Kc3 Rxa1

Qa4 c2 c2 Kxa1

3

Perth

Darwin

Melbourne

Sydney

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

3

L R

L R L R

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

3

L R

L R L R

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter

3

L R

L R L R

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter
• Much shorter plans => exponential savings

3

is provably optimal

L R

L R L R

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter
• Much shorter plans => exponential savings

• Can look ahead much further

3

looks like a good start

L R

L R L R

Melbourne

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter
• Much shorter plans => exponential savings

• Can look ahead much further

• Requires models for HLAs
• i.e., transition and cost fns

3

looks like a good start

L R

L R L R

Melbourne

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter
• Much shorter plans => exponential savings

• Can look ahead much further

• Requires models for HLAs
• i.e., transition and cost fns

• No suitable models in literature

3

looks like a good start

L R

L R L R

Melbourne

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

Abstract Lookahead

• k-step lookahead >> 1-step lookahead
• e.g., chess

• Abstract plans with HLAs are shorter
• Much shorter plans => exponential savings

• Can look ahead much further

• Requires models for HLAs
• i.e., transition and cost fns

• No suitable models in literature

• We extend our angelic semantics

3

looks like a good start

L R

L R L R

Melbourne

• k-step lookahead no use if steps too small
• e.g., first k turns in TSP of Australia

• this is one small part of a human life,
≈ 20,000,000,000,000 primitive actions

s0

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains

State
space

4

s0 h1

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

State
space

4

s0 h1

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...

State
space

4

s0 h2h1

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...

State
space

4

s0 h2h1

h2

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...

State
space

4

s0 h2h1

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...

State
space

4

s0 [h1, h2]

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...

State
space

4

s0 [h1, h2]

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

State
space

4

s0 [h1, h2]

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

State
space

4

G

s0 [h1, h2]

[h1, h2] is a solution

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

State
space

4

G

s0 [h1, h2]

[h1, h2] is a solution

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

• May seem related to nondeterminism ...

State
space

4

G

s0 [h1, h2]

[h1, h2] is a solution

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

• May seem related to nondeterminism ...
• but uncertainty is angelic: resolved by the agent, not an adversary

State
space

4

G

s0 [h1, h2]

[h1, h2] is a solution

Angelic Semantics for HLAs [MRW ’07]

• Models HLAs in deterministic domains
• Central idea is reachable set of an HLA from some state

• When extended to sequences of actions, ...
• … allows proving that a plan can or cannot possibly reach the goal

• May seem related to nondeterminism ...
• but uncertainty is angelic: resolved by the agent, not an adversary

[a4, a1, a3, a2]

State
space

4

G

Angelic Semantics cont.

• Approximate descriptions provide lower & upper bounds
on reachable sets

• Descriptions are true: follow logically from hierarchy

5

Angelic Semantics cont.

• Approximate descriptions provide lower & upper bounds
on reachable sets

• Descriptions are true: follow logically from hierarchy

• Sound & complete planning algorithm uses descriptions to

• Commit to provably successful abstract plans:
Downward Refinement Property (DRP) automatically satisfied

• potentially exponential speedup

• Prune provably unsuccessful abstract plans (USP satisfied)

5

Contributions

• Extend angelic semantics with action costs

• Developed novel algorithms that do lookahead with HLAs
• Angelic Hierarchical A* (AHA*)

• Angelic Hierarchical Learning Real-Time A* (AHLRTA*)

• Both require three inputs:
• planning problem

• action hierarchy (set of HLAs)

• approximate models for HLAs

6

Melbourne

Deterministic Planning Problems

• Here, a planning problem =

7

S

Deterministic Planning Problems

• Here, a planning problem =
• State space S

7

S s0

G

Deterministic Planning Problems

• Here, a planning problem =
• State space S
• Initial state s0, terminal set G

7

S s0

G

Deterministic Planning Problems

• Here, a planning problem =
• State space S
• Initial state s0, terminal set G
• Primitive action set

7

S s0

G

Deterministic Planning Problems

• Here, a planning problem =
• State space S
• Initial state s0, terminal set G
• Primitive action set
• Transition function: S × A → S
• Cost function : S × A → R ∪ {∞}

7
Transitions & costs for action a1

-5
4

∞
8

3

∞

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

8

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

8

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

T1 T2 T3 T4

A B

C

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B

C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World Domain

• Elaborated Blocks World with
discrete spatial constraints
• Gripper must stay in bounds
• Can’t pass through blocks
• Can only turn at top row

• All actions have cost 1

• Goal: have C on T4
• Can’t just move directly
• Final plan has 22 steps

8

T1 T2 T3 T4

A B C

L, D, GetR, U, Turn, D, PutL,
R, R, D, GetL, L, PutL, U, L,
GetL, U, Turn, R, D, D, PutR

Running Example: Warehouse World HLAs

9

L D GetR U Turn D PutL

Running Example: Warehouse World HLAs

9

L D GetR U Turn D PutL

Nav(2,3) Nav(3,3) Nav(2,3)

Running Example: Warehouse World HLAs

9

L D GetR U Turn D PutL

Nav(2,3) Nav(3,3) Nav(2,3)

NavT(2,3) NavT(2,3)

Running Example: Warehouse World HLAs

9

L D GetR U Turn D PutL

Nav(2,3) Nav(3,3) Nav(2,3)

NavT(2,3) NavT(2,3)

Move(C,A)

Running Example: Warehouse World HLAs

9

L D GetR U Turn D PutL

Nav(2,3) Nav(3,3) Nav(2,3)

NavT(2,3) NavT(2,3)

Move(C,A)

Act

...

...

...

...

• Plans of interest are primitive
refinements of special HLA Act

[Act]

10

Running Example: Warehouse World HLAs

• Plans of interest are primitive
refinements of special HLA Act

• Each HLA has a set of immediate
refinements into action sequences [Act]

10

Running Example: Warehouse World HLAs

[Move(B,C), Act]

... iff at G

 []

• Plans of interest are primitive
refinements of special HLA Act

• Each HLA has a set of immediate
refinements into action sequences [Act]

10

Running Example: Warehouse World HLAs

[Move(B,C), Act]

... iff at G

 []

[NavT(left of B), GetR, NavT(left of target), PutR]
...

...

• Plans of interest are primitive
refinements of special HLA Act

• Each HLA has a set of immediate
refinements into action sequences [Act]

10

Running Example: Warehouse World HLAs

... ...

[Move(B,C), Act]

... iff at G

 []

[NavT(left of B), GetR, NavT(left of target), PutR]
...

...

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)

11

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

11

Act

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Act

Move(C,B)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Act

Move(C,B)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Act

Move(C,B)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Act

Move(C,B)

Nav
(xC-

1,y
C)

...

Act
Move(B,C)

Abstract Lookahead Trees (ALTs)

• ALTs generalize lookahead trees for flat algs (e.g., A*)
• Represent a set of potential plans

• Basic operation: refine a plan (replace with all refs. at some HLA)

• Nodes have optimistic & pessimistic valuations

11

Act
Move(C,A) Act

Act

Move(A,C)

Move(B,C) Act

Act

Move(C,B)

Nav
(xC-

1,y
C)

...

Act
Move(B,C)

8/∞

0/0

2/4

4/8

5/7 7/9

9/∞

3/∞

3/3

1/1

6/6 8/8

Modeling HLAs

• An HLA is fully characterized by planning problem + hierarchy

12

NavT(0,1)

Modeling HLAs

• An HLA is fully characterized by planning problem + hierarchy
• But without abstraction, lose benefits of hierarchy

12

NavT(0,1)
6

8

7

5

10

...

...

Modeling HLAs

• An HLA is fully characterized by planning problem + hierarchy
• But without abstraction, lose benefits of hierarchy

• Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:
• Valuation of HLA h from state s:

• For each s’, min cost of any primitive refinement of h that takes s to s’

12

NavT(0,1)

! !

6 !

! !

5 !

6

5

Modeling HLAs

• An HLA is fully characterized by planning problem + hierarchy
• But without abstraction, lose benefits of hierarchy

• Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:
• Valuation of HLA h from state s:

• For each s’, min cost of any primitive refinement of h that takes s to s’

• Exact description of h = valuation of h from each s

12

NavT(0,1)

! !

6 !

! !

5 !

! !

6 !

! !

5 !

! !

6 !

! !

5 !...

Modeling HLAs

• An HLA is fully characterized by planning problem + hierarchy
• But without abstraction, lose benefits of hierarchy

• Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:
• Valuation of HLA h from state s:

• For each s’, min cost of any primitive refinement of h that takes s to s’

• Exact description of h = valuation of h from each s

• But this description has no compact, efficient representation in general

12

NavT(0,1)

! !

6 !

! !

5 !

! !

6 !

! !

5 !

! !

6 !

! !

5 !...

! !

6 4

3 1

5 !

Optimistic and Pessimistic Valuations

• Instead, use approximate valuations

Exact

13

! !

6 4

3 1

5 !

Optimistic and Pessimistic Valuations

• Instead, use approximate valuations

• We choose a simple form: reachable set + cost bound on set

Exact

13

! !

6 4

3 1

5 !

Optimistic and Pessimistic Valuations

• Instead, use approximate valuations

• We choose a simple form: reachable set + cost bound on set

• Optimistic valuations never overestimate best achievable cost

Exact

13

Optimistic

1

! !

6 4

3 1

5 !

Optimistic and Pessimistic Valuations

• Instead, use approximate valuations

• We choose a simple form: reachable set + cost bound on set

• Optimistic valuations never overestimate best achievable cost

• Pessimistic valuations never underestimate best achievable cost

Exact

13

Optimistic

1

Pessimistic

4/

Representing Descriptions: NCSTRIPS

14

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA

14

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA

14

NavT(xt,yt) (Pre: At(xs,ys))

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA
• Also include a cost bound

14

NavT(xt,yt) (Pre: At(xs,ys))

Opt: -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≥ |xs - xt| + |ys- yt|

s
t

~ ~

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA
• Also include a cost bound
• Can condition on features of initial state

14

NavT(xt,yt) (Pre: At(xs,ys))

Opt: -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≥ |xs - xt| + |ys- yt|

Pess: IF Free(xt,yt) ∧ ∀x Free(x,ymax) :
	 -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≤ |xs - xt| + 2 ymax - yt - ys + 1

s
t

~ ~

s
t~ ~

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA
• Also include a cost bound
• Can condition on features of initial state

14

NavT(xt,yt) (Pre: At(xs,ys))

Opt: -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≥ |xs - xt| + |ys- yt|

Pess: IF Free(xt,yt) ∧ ∀x Free(x,ymax) :
	 -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≤ |xs - xt| + 2 ymax - yt - ys + 1
 ELSE:
 nil

s
t

x

s
t

~ ~

s
t~ ~

Representing Descriptions: NCSTRIPS

• Descriptions specify propositions (possibly) added/deleted by HLA
• Also include a cost bound
• Can condition on features of initial state

• An simple algorithm progresses a valuation (DNF + #)
through an NCSTRIPS description to produce next valuation

14

NavT(xt,yt) (Pre: At(xs,ys))

Opt: -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≥ |xs - xt| + |ys- yt|

Pess: IF Free(xt,yt) ∧ ∀x Free(x,ymax) :
	 -At(xs,ys), +At(xt,yt), -FaceR, +FaceR

 cost ≤ |xs - xt| + 2 ymax - yt - ys + 1
 ELSE:
 nil

s
t

x

s
t

~ ~

s
t~ ~

Angelic Hierarchical A* (AHA*)

• Construct an ALT with the single plan [Act]

• Loop
• Select a plan with minimal optimistic cost to G

• If primitive, return it

• Otherwise, refine one of its HLAs

• Prune dominated refinements

15

AHA*: Intuitive Picture

s0 GAct

highest-level
primitive

16

AHA*: Intuitive Picture

s0 GAct

highest-level
primitive

17

AHA*: Intuitive Picture

s0 GAct

highest-level
primitive

18

AHA*: Intuitive Picture

s0 G
Act

highest-level
primitive

19

AHA*: Intuitive Picture

G
Act

s0

highest-level
primitive

20

AHA*: Intuitive Picture

G
Act

s0

highest-level
primitive

21

AHA*: Intuitive Picture

Gs0

highest-level
primitive

22

AHA*: Intuitive Picture

Gs0

highest-level
primitive

23

AHA*: Intuitive Picture

Gs0

highest-level
primitive

23

Analysis of AHA*

• AHA* is hierarchically optimal (HO)
• Optimistic valuation → admissible heuristic
• Pruning never rules out all HO plans

• Better descriptions lead to lower runtime
• optimistic → directed search
• pessimistic → pruning (refine HO plans w/o backtracking)

• Reduces to A* given “flat” hierarchy: Act → [Prim, Act]

24

runtimes in seconds on five warehouse
world instances of increasing solution length

and act optimally thereafter.
If f-costs are inadmissible or the hierarchy is not

optimality-preserving, the theorem still holds if s0 is sam-
pled from a distribution with support on S in each trial.

Our implementation of AHLRTA* includes two minor
changes from the version described above, which we have
found to increase its effectiveness. First, it sometimes
throws away some of its allowed computation time, so that
the number of refinements taken per allowed initial primitive
action is constant; this tends to improve the interaction of the
lookahead strategy with the learning rule. Second, when de-
ciding when to “lock in” a plan it requires additionally that
the plan is more refined than the previous locked in plan;
this helps counteract the implicit bias towards higher-level
plans caused by aggregation of costs from primitives and
various HLAs into g-cost. Since both changes effectively
only change the stopping time of the algorithm, its desirable
properties are preserved.

Experiments
This section describes results for the above algorithms on
two domains: our “nav-switch” running example, and the
warehouse world (MRW ’07).11

The warehouse world is an elaboration of the well-known
blocks world, with discrete spatial constraints added. In this
domain, a forklift-like gripper hanging from the ceiling can
move around and manipulate blocks stacked on a table. Both
gripper and blocks occupy single squares in a 2-d grid of al-
lowed positions. The gripper can move to free squares in the
four cardinal directions, turn (to face the other way) when
in the top row, and pick up and put down blocks from either
side. Each primitive action has unit cost. Because of the
limited maneuvering space, warehouse world problems can
be rather difficult. For instance, Figure 3 shows a problem
that cannot be solved in fewer than 50 primitive steps. The
figure also shows our HLAs for the domain, which we use
unchanged from (MRW ’07) along with the NCSTRIPS de-
scriptions therein (to which we add simple cost bounds). We
consider six instances of varying difficulty.

For the nav-switch domain, we consider square grids of
varying size with 3 randomly placed switches, where the
goal is always to navigate from one corner to the other. We
use the hierarchy and descriptions described above.

We first present results for our offline algorithms on these
domains (see Table 1). On the warehouse world instances,
nonhierarchical (flat) A* does reasonably well on small
problems, but quickly becomes impractical as the optimal
plan length increases. AHA* is able to plan optimally in
larger problems, but for the largest instances, it too runs out
of time. The reason is that it must not only find the opti-
mal plan, but also prove that all other high-level plans have
higher cost. In contrast, AHSS with a threshold of∞ is able
to solve all the problems fairly quickly.

We also included, for comparison, results for the Hierar-
chical Forward Search (HFS) algorithm (MRW ’07), which
does not consider plan cost. When passed a threshold of

11Our code is available at
http://www.cs.berkeley.edu/∼jawolfe/angelic/

1

1 2

2

3

3

4

4

t1 t2 t3 t4

a b

c

HLA Goal
Act Achieve goal by seq. of Moves
Move(b, c) Stack block b on c by NavT to

one side of b, pick up, NavT to
side of c, put down.

NavT(x, y) Go to (x, y), possibly turning
Nav(x, y) Go directly to (x, y)

Figure 3: Left: A 4x4 warehouse world problem with goal
ON(c, t2) ∧ ON(a, c). Right: HLAs for warehouse world domain.

nav-switch
A* AHA* AHSS
1 0 0 0
2 22 1 1
3 176 3 3
4 > 10000 40 40

warehouse world
Solution Length A* AHA*

7 0.9 0.6
16 10 4.7
25 40 11
37 550 30
44 > 10000 68

Table 1: Run-times of offline algorithms, rounded to the nearest
second, on some nav-switch and warehouse world problem in-
stances. The algorithms are (flat) graph A*, AHA*, AHSS with
threshold α=∞, and HFS from (MRW ’07). Algorithms were ter-
minated if they failed to return within 104 seconds (shown as “–”).

∞, AHSS has the same objective as HFS: to find any plan
from s0 to t with as little computation as possible. However,
AHSS has several important advantages over HFS. First, its
priority function serves as a heuristic, and usually results in
higher-quality plans being found. Second, AHSS is actually
much simpler. In particular, whereas HFS required itera-
tive deepening, cycle checking, and a special plan decom-
position mechanism to ensure completeness and efficiency,
the use of cost information allows AHSS to naturally reap
the same benefits without needing any such explicit mech-
anisms. Finally, the abstract lookahead tree data structure
provides caching and decreases the number of NCSTRIPS
progressions required. Due to these improvements, HFS is
slightly slower than the optimal planner AHA*, and a few
orders of magnitude slower than AHSS.

On the nav-switch instances, results are qualitatively simi-
lar. Again, flat A* quickly becomes impractical as the prob-
lem size grows. However, in this domain, AHA* actually
performs very well, almost matching the performance of
AHSS. The reason is that in this domain, the descriptions
for Nav are exact, and thus AHA* can very quickly find a
provably optimal high-level plan and refine it down to the
primitive level without backtracking, as described earlier.

The obvious next step would be to compare AHA* with
other optimal hierarchical planners, such as SHOP2 on its
“optimal” setting. However, this is far from straightforward,
for several reasons. First, useful hierarchies are often not
optimality-preserving, and it is not at all obvious how we
should compare different “optimal” planners that use differ-
ent standards for optimality. Second, as described in the re-
lated work section below, the type and amount of problem-
specific information provided to our algorithms can be very
different than for HTN planners such as SHOP2. We have
yet to find a way to perform meaningful experimental com-
parisons under these circumstances.

For the online setting, we compared (flat) LRTA* and
AHLRTA*. The performance of an online algorithm on a
given instance depends on the number of allowed refine-

Online Search

• Situated agents must cope with passage of time
• offline planning rarely feasible
• common alternative: real-time search

• Korf’s Learning Real-Time A* (LRTA*):
• Combines limited lookahead + learning
• Always reaches goal, converges to optimal

• Angelic Hierarchical LRTA* (AHLRTA*)
• Performs hierarchical lookahead
• Shares LRTA*’s guarantees
• Reduces to LRTA* given

“flat” hierarchy

25

Gs0

Online Results

 10

 100

 1000

 10000

 0 1000 2000 3000 4000 5000
refinements per env. step

warehouse world

LRTA*
AHLRTA*

26

total
solution
cost

avg. over 3
instances

1 AHLRTA* refinement ≈ 5 LRTA* refinements

Summary

Model-based hierarchical planning is theoretically
interesting, shows promising empirical performance

27

