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High-Level Actions (HLAS)

 Here, a high-level action (HLA) =
a set of allowed immediate refinements:

* each is a sequence of actions
* may have associated preconditions

* Almost all actions we think about are high-level
 Plan a trip
* Vacuum the house
 Go to work

[Go(work)]

Naining

A A
) R

[rGetIn(car), Drive(work), GetOut(car)] Malk(stop), Bus(work)]
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Abstract Lookahead

* k-step lookahead >> 7-step lookahead
* e.g., chess

* k-step lookahead no use if steps too small
* e.g., first kturns in TSP of Australia

+ this is one small part of a human life,
~ 20,000,000,000,000 primitive actions

« Abstract plans with HLAs are shorter
* Much shorter plans => exponential savings
* Can look ahead much further
* Requires models for HLAs
e |.e., transition and cost fns
* No suitable models in literature

* We extend our angelic semantics
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Angelic Semantics for HLAS [MRW ’07]

e Models HLAs in deterministic domains

 Central idea is reachable set of an HLA from some state
* When extended to sequences of actions, ...
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Angelic Semantics for HLAS [M

e Models HLAs in deterministic domains

RW *07]

e Central idea is reachable set of an HLA from some state

* When extended to sequences of actions, ...

* ... allows proving that a plan can or cannot possibly reach the goal
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e Models HLAs in deterministic domains

 Central idea is reachable set of an HLA from some state
* When extended to sequences of actions, ...

* ... allows proving that a plan can or cannot possibly reach the goal

* May seem related to nondeterminism ...
* but uncertainty is angelic: resolved by the agent, not an adversary
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Angelic Semantics for HLAS [MRW ’07]

e Models HLAs in deterministic domains

 Central idea is reachable set of an HLA from some state
* When extended to sequences of actions, ...
* ... allows proving that a plan can or cannot possibly reach the goal

* May seem related to nondeterminism ...
* but uncertainty is angelic: resolved by the agent, not an adversary

State [h, h,] is a solution
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Angelic Semantics cont.

 Approximate descriptions provide lower & upper bounds
on reachable sets

* Descriptions are true: follow logically from hierarchy

e Sound & complete planning algorithm uses descriptions to

 Commit to provably successful abstract plans:
Downward Refinement Property (DRP) automatically satisfied

e potentially exponential speedup

* Prune provably unsuccessful abstract plans (USP satisfied)



Contributions

* Extend angelic semantics with action costs

* Developed novel algorithms that do lookahead with HLAs
« Angelic Hierarchical A* (AHAY) |

- Both require three inputs:
« planning problem

 action hierarchy (set of HLAS)
« approximate models for HLAs
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Deterministic Planning Problems

* Here, a planning problem =
e State space S
e |nitial state =o, terminal set G
* Primitive action set
* Transition function: S x A =+ S
* Cost function :SxA—RU{oco}

Transitions & costs for action a-
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Abstract Lookahead Trees (ALTS)

» ALTs generalize lookahead trees for flat algs (e.g., A%)
* Represent a set of potential plans
* Basic operation: refine a plan (replace with all refs. at some HLA)
* Nodes have optimistic & pessimistic valuations

6/6 8/8
3/3 .

Act @)

1/1 & Move(B.C) !! =

4
MOV@(QB . o)

() Act ° N
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Modeling HLAS

* An HLA is fully characterized by planning problem + hierarchy

e But without abstraction, lose benefits of hierarchy

* Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:

e \aluation of HLA h from state s:
* Foreach s’, min cost of any primitive refinement of h that takes sto s’
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Modeling HLAS

* An HLA is fully characterized by planning problem + hierarchy

e But without abstraction, lose benefits of hierarchy

* Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:

e \aluation of HLA h from state s:
* Foreach s’, min cost of any primitive refinement of h that takes sto s’

* Exact description of h = valuation of h from each s
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Modeling HLAS

* An HLA is fully characterized by planning problem + hierarchy

e But without abstraction, lose benefits of hierarchy

* Extension of idea from “Angelic Semantics for HLAs” [MRW ‘07]:

e \aluation of HLA h from state s:
* Foreach s’, min cost of any primitive refinement of h that takes sto s’

* Exact description of h = valuation of h from each s

* But this description has no compact, efficient representation in general
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Optimistic and Pessimistic Valuations

* Instead, use approximate valuations
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* Instead, use approximate valuations

* \WWe choose a simple form: reachable set + cost bound on set
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Optimistic and Pessimistic Valuations

* Instead, use approximate valuations
* \WWe choose a simple form: reachable set + cost bound on set

« Optimistic valuations never overestimate best achievable cost

/.0.0\

13



Optimistic and Pessimistic Valuations

* Instead, use approximate valuations

We choose a simple form: reachable set + cost bound on set

Optimistic valuations never overestimate best achievable cost

e Pessimistic valuations never underestimate best achievable cost
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Representing Descriptions: NCSTRIPS

* Descriptions specify propositions (possibly) added/deleted by HLA
* Also include a cost bound
 Can condition on features of initial state
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Representing Descriptions: NCSTRIPS

* Descriptions specify propositions (possibly) added/deleted by HLA
* Also include a cost bound
e Can condition on features of initial state

NaVT(Xt7yt) (Pre: At(XSJyS))
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cost = |Xs- x| + |ys- vl
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ELSE:
nil




Representing Descriptions: NCSTRIPS

* Descriptions specify propositions (possibly) added/deleted by HLA
* Also include a cost bound
e Can condition on features of initial state

* An simple algorithm progresses a valuation (DNF + #)
through an NCSTRIPS description to produce next valuation

NaVT(bel‘) (Pre: At(XSJyS))

Opt: -At(x,,Y.), +At(x, V), -FaceR, ¥FaceR S

1

cost = X=X + |ys- ¥

Pess: IF Free(x,y, A vx Free(x,y,..,) :
-At(x,,y.), +At(x,y,), -FaceR, ¥FaceR
cost < X¢-X{| +2 Vo~ Vi~ Vs + 1
ELSE:
nil




Angelic Hierarchical A* (AHAY)

e Construct an ALT with the single plan [Act]
 Loop
e Select a plan with minimal optimistic cost to G
e |f primitive, return it
e Otherwise, refine one of its HLAS

e Prune dominated refinements

15



AHA™: Intuitive Picture
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Analysis of AHA™

 AHA* is hierarchically optimal (HO)
e Optimistic valuation = admissible heuristic
* Pruning never rules out all HO plans

o Better descriptions lead to lower runtime
e optimistic — directed search

e pessimistic = pruning (refine HO plans w/o backtracking)
 Reduces to A* given “flat” hierarchy: Act = [Prim, Act]

Solution Length A* AHA*
7 0.9 0.6
16 10 4.7
25 40 11
37 550 30
44 > 10000 63

runtimes in seconds on five warehouse
world instances of increasing solution length



Online Search

e Situated agents must cope with passage of time
e offline planning rarely feasible
e common alternative: real-time search

* Korf’s Learning Real-Time A* (LRTA”):
 Combines limited lookahead + learning
* Always reaches goal, converges to optimal

* Angelic Hierarchical LRTA* (AHLRTAY)

* Performs hierarchical lookahead
 Shares LRTA*’s guarantees

 Reduces to LRTA" given
“flat” hierarchy
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Online Results

10000
total
solution 1000
1
cost LRTA*
100 AHLRTA* ===--.
avg. over 3

instances

10 I I I I I I

0 1000 2000 3000 4000 5000
refinements per env. step

1 AHLRTA* refinement = 5 LRTA* refinements
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Summary

Model-based hierarchical planning is theoretically
interesting, shows promising empirical performance

’ Mar.29,1976 T H E Price 75 cents

NEW YORKER
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