Angelic Hierarchical Planning: Optimal and Online Algorithms

Bhaskara Marthi
MIT/Willow Garage
bhaskara@csail.mit.edu

Stuart Russell
UC Berkeley
russell@cs.berkeley.edu

Jason Wolfe
UC Berkeley
jawolfe@cs.berkeley.edu

High-Level Actions (HLAs)

- Here, a high-level action (HLA) = a set of allowed immediate refinements:
- each is a sequence of actions
- may have associated preconditions
- Almost all actions we think about are high-level
- Plan a trip
- Vacuum the house
- Go to work

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions

- Abstract plans with HLAs are shorter

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions
- Abstract plans with HLAs are shorter
- Much shorter plans => exponential savings

is provably optimal

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions
- Abstract plans with HLAs are shorter
- Much shorter plans => exponential savings
- Can look ahead much further

looks like a good start

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions
- Abstract plans with HLAs are shorter
- Much shorter plans => exponential savings
- Can look ahead much further
- Requires models for HLAs
- i.e., transition and cost fns

looks like a good start

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions
- Abstract plans with HLAs are shorter
- Much shorter plans => exponential savings
- Can look ahead much further
- Requires models for HLAs
- i.e., transition and cost fns
- No suitable models in literature

looks like a good start

Abstract Lookahead

- k-step lookahead >> 1-step lookahead
- e.g., chess
- k-step lookahead no use if steps too small
- e.g., first k turns in TSP of Australia
- this is one small part of a human life, $\approx 20,000,000,000,000$ primitive actions
- Abstract plans with HLAs are shorter
- Much shorter plans => exponential savings
- Can look ahead much further
- Requires models for HLAs
- i.e., transition and cost fns
- No suitable models in literature
- We extend our angelic semantics

looks like a good start

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state - When extended to sequences of actions, ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state - When extended to sequences of actions, ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state - When extended to sequences of actions, ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state - When extended to sequences of actions, ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state - When extended to sequences of actions, ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal

[h_{1}, h_{2}] is a solution
[h_{1}, h_{2}]

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal
- May seem related to nondeterminism ...

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal
- May seem related to nondeterminism ...
- but uncertainty is angelic: resolved by the agent, not an adversary

[h_{1}, h_{2}] is a solution
[h_{1}, h_{2}]

Angelic Semantics for HLAs [MRW '07]

- Models HLAs in deterministic domains
- Central idea is reachable set of an HLA from some state
- When extended to sequences of actions, ...
- ... allows proving that a plan can or cannot possibly reach the goal
- May seem related to nondeterminism ...
- but uncertainty is angelic: resolved by the agent, not an adversary

Angelic Semantics cont.

- Approximate descriptions provide lower \& upper bounds on reachable sets
- Descriptions are true: follow logically from hierarchy

Angelic Semantics cont.

- Approximate descriptions provide lower \& upper bounds on reachable sets
- Descriptions are true: follow logically from hierarchy
- Sound \& complete planning algorithm uses descriptions to
- Commit to provably successful abstract plans: Downward Refinement Property (DRP) automatically satisfied
- potentially exponential speedup
- Prune provably unsuccessful abstract plans (USP satisfied)

Contributions

- Extend angelic semantics with action costs
- Developed novel algorithms that do lookahead with HLAs
- Angelic Hierarchical $\mathrm{A}^{*}\left(\mathrm{AHA}^{*}\right)$

- Angelic Hierarchical Learning Real-Time A* (AHLRTA*)
- Both require three inputs:
- planning problem

- action hierarchy (set of HLAs)
- approximate models for HLAs

Deterministic Planning Problems

- Here, a planning problem =

Deterministic Planning Problems

- Here, a planning problem =
- State space S

Deterministic Planning Problems

- Here, a planning problem =
- State space S
- Initial state S , terminal set G

Deterministic Planning Problems

- Here, a planning problem =
- State space S
- Initial state so, terminal set G
- Primitive action set

Deterministic Planning Problems

- Here, a planning problem =
- State space S
- Initial state S , terminal set G
- Primitive action set
- Transition function: $S \times A \rightarrow S$
- Cost function $\quad: S \times A \rightarrow \mathbb{R} \cup\{\infty\}$

Transitions \& costs for action a_{1}

Running Example: Warehouse World Domain

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row

Running Example: Warehouse World Domain

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can't just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World Domain

L, D, GetR, U, Turn, D, PutL, R, R, D, GetL, L, PutL, U, L, GetL, U, Turn, R, D, D, PutR

- Elaborated Blocks World with discrete spatial constraints
- Gripper must stay in bounds
- Can't pass through blocks
- Can only turn at top row
- All actions have cost 1
- Goal: have C on T4
- Can’t just move directly
- Final plan has 22 steps

Running Example: Warehouse World HLAs

Running Example: Warehouse World HLAs

Running Example: Warehouse World HLAs

Running Example: Warehouse World HLAs

Move(C,A)

$\operatorname{Nav}(2,3)$

GetR

Running Example: Warehouse World HLAs

Act

Move(C,A)

$\operatorname{Nav}(2,3)$

NavT(2,3)

Nav(3,3)

U Turn

Nav(2,3)

D PutL

Running Example: Warehouse World HLAs

- Plans of interest are primitive refinements of special HLA Act
[Act]

Running Example: Warehouse World HLAs

- Plans of interest are primitive refinements of special HLA Act
- Each HLA has a set of immediate refinements into action sequences

Running Example: Warehouse World HLAs

- Plans of interest are primitive refinements of special HLA Act
- Each HLA has a set of immediate refinements into action sequences

Running Example: Warehouse World HLAs

- Plans of interest are primitive refinements of special HLA Act
- Each HLA has a set of immediate refinements into action sequences

[NavT(left of B), GetR, NavT(left of target), PutR]

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A*)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{\star})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{\star})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)

Abstract Lookahead Trees (ALTs)

- ALTs generalize lookahead trees for flat algs (e.g., A^{*})
- Represent a set of potential plans
- Basic operation: refine a plan (replace with all refs. at some HLA)
- Nodes have optimistic \& pessimistic valuations

Modeling HLAs

- An HLA is fully characterized by planning problem + hierarchy

NavT(0,1)

Modeling HLAs

- An HLA is fully characterized by planning problem + hierarchy
- But without abstraction, lose benefits of hierarchy

Modeling HLAs

- An HLA is fully characterized by planning problem + hierarchy
- But without abstraction, lose benefits of hierarchy
- Extension of idea from "Angelic Semantics for HLAs" [MRW ‘07]:
- Valuation of HLA h from state s:
- For each s ', min cost of any primitive refinement of h that takes s to s '

Modeling HLAs

- An HLA is fully characterized by planning problem + hierarchy
- But without abstraction, lose benefits of hierarchy
- Extension of idea from "Angelic Semantics for HLAs" [MRW ‘07]:
- Valuation of HLA h from state s:
- For each s', min cost of any primitive refinement of h that takes s to s'
- Exact description of $h=$ valuation of h from each s

NavT(0,1)

Modeling HLAs

- An HLA is fully characterized by planning problem + hierarchy
- But without abstraction, lose benefits of hierarchy
- Extension of idea from "Angelic Semantics for HLAs" [MRW ‘07]:
- Valuation of HLA h from state s:
- For each s', min cost of any primitive refinement of h that takes s to s'
- Exact description of $h=$ valuation of h from each s
- But this description has no compact, efficient representation in general

NavT(0,1)

Optimistic and Pessimistic Valuations

- Instead, use approximate valuations

Optimistic and Pessimistic Valuations

- Instead, use approximate valuations
- We choose a simple form: reachable set + cost bound on set

Optimistic and Pessimistic Valuations

- Instead, use approximate valuations
- We choose a simple form: reachable set + cost bound on set
- Optimistic valuations never overestimate best achievable cost

Optimistic and Pessimistic Valuations

- Instead, use approximate valuations
- We choose a simple form: reachable set + cost bound on set
- Optimistic valuations never overestimate best achievable cost
- Pessimistic valuations never underestimate best achievable cost

Representing Descriptions: NCSTRIPS

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA
- Also include a cost bound

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA
- Also include a cost bound
- Can condition on features of initial state

$\operatorname{NavT}\left(x_{t}, y_{t}\right)$	(Pre: $\operatorname{At}\left(x_{s}, y_{s}\right)$)
Opt: $\quad-\operatorname{At}\left(x_{s}, y_{s}\right),+\operatorname{At}\left(x_{t}, y_{t}\right), \simeq$ FaceR, $\mathfrak{\mp F a c e R}$ cost $\geq\left\|x_{s}-x_{t}\right\|+\left\|y_{s}-y_{t}\right\|$	S

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA
- Also include a cost bound
- Can condition on features of initial state

$\operatorname{NavT}\left(x_{t}, y_{t}\right)$	(Pre: $\operatorname{At}\left(x_{s}, y_{s}\right)$)
$\begin{aligned} \text { Opt: } & -\operatorname{At}\left(x_{s}, y_{s}\right),+\operatorname{At}\left(x_{t}, y_{t}\right), \tilde{\sim} \text { FaceR, } \tilde{\text { FaceR }} \\ & \cos t \geq\left\|x_{s}-x_{t}\right\|+\left\|y_{s}-y_{t}\right\| \end{aligned}$	
Pess: IF Free $\left(x_{t}, y_{t}\right) \wedge \forall x \operatorname{Free}\left(x, y_{\max }\right)$: $-\operatorname{At}\left(x_{s}, y_{s}\right),+\operatorname{At}\left(x_{t}, y_{t}\right), \sim$ FaceR, $\tilde{\text { FFaceR }}$ cost $\leq\left\|x_{s}-x_{t}\right\|+2 y_{\max }-y_{t}-y_{s}+1$ ELSE: nil	

Representing Descriptions: NCSTRIPS

- Descriptions specify propositions (possibly) added/deleted by HLA
- Also include a cost bound
- Can condition on features of initial state
- An simple algorithm progresses a valuation (DNF + \#) through an NCSTRIPS description to produce next valuation

$\operatorname{NavT}\left(x_{t}, y_{t}\right)$	(Pre: $\operatorname{At}\left(x_{s}, y_{s}\right)$)
$\begin{array}{ll} \text { Opt: } & -\operatorname{At}\left(x_{s}, y_{s}\right),+\operatorname{At}\left(x_{t}, y_{t}\right), \sim \text { FaceR, } \tilde{\text { FFaceR }} \\ & \cos t \geq\left\|x_{s}-x_{t}\right\|+\left\|y_{s}-y_{t}\right\| \end{array}$	
$\begin{aligned} & \text { Pess: IF Free }\left(x_{t}, y_{t}\right) \wedge \forall x \text { Free }\left(x, y_{\max }\right) \text { : } \\ & \quad-\operatorname{At}\left(x_{s}, y_{s}\right),+\operatorname{At}\left(x_{t}, y_{t}\right), \sim \text { FaceR, } \tilde{+} \text { FaceR } \\ & \cos t \leq\left\|x_{s}-x_{t}\right\|+2 y_{\max }-y_{t}-y_{s}+1 \end{aligned}$ ELSE: nil	

Angelic Hierarchical A* (AHA*)

- Construct an ALT with the single plan [Act]
- Loop
- Select a plan with minimal optimistic cost to G
- If primitive, return it
- Otherwise, refine one of its HLAs
- Prune dominated refinements

AHA*: Intuitive Picture

highest-level
primitive

AHA*: Intuitive Picture

highest-level
primitive

AHA*: Intuitive Picture

highest-level
primitive

AHA*: Intuitive Picture

highest-level
primitive

AHA*: Intuitive Picture

highest-level
primitive

Analysis of AHA*

- AHA* is hierarchically optimal (HO)
- Optimistic valuation \rightarrow admissible heuristic
- Pruning never rules out all HO plans
- Better descriptions lead to lower runtime
- optimistic \rightarrow directed search
- pessimistic \rightarrow pruning (refine HO plans w/o backtracking)
- Reduces to A^{*} given "flat" hierarchy: Act \rightarrow [Prim, Act]

Solution Length	A *	AHA* *
7	0.9	0.6
16	10	4.7
25	40	11
37	550	30
44	>10000	68

runtimes in seconds on five warehouse world instances of increasing solution length

Online Search

- Situated agents must cope with passage of time
- offline planning rarely feasible
- common alternative: real-time search
- Korf's Learning Real-Time A* (LRTA*):
- Combines limited lookahead + learning
- Always reaches goal, converges to optimal
- Angelic Hierarchical LRTA* (AHLRTA*)
- Performs hierarchical lookahead
- Shares LRTA*'s guarantees
- Reduces to LRTA* given "flat" hierarchy

Online Results

1 AHLRTA* refinement ≈ 5 LRTA* refinements

Summary

Model-based hierarchical planning is theoretically interesting, shows promising empirical performance

Mar.29,1976 THE Price 75 cents
 NEW YOR KER

