Independence: Random variables X, Y are independent iff for all values u and v,

$$
\operatorname{Pr}[X=u, Y=v]=\operatorname{Pr}[X=u] \operatorname{Pr}[Y=v]
$$

Expected Value: The expected value $\mathrm{E}[X]=\bar{X}$ of X :

$$
\mathrm{E}[X]=\sum_{k} k \operatorname{Pr}[X=k] \text { and if } X \text { is integer-valued: } \mathrm{E}[X]=\sum_{k=1}^{\infty} \operatorname{Pr}[X \geq k]
$$

Linearity of Expectation: Does not require independence:

$$
\mathrm{E}\left[\sum_{i=1}^{n} X_{i}\right]=\sum_{i=1}^{n} \mathrm{E}\left[X_{i}\right]
$$

Variance and standard deviation: The variance $\operatorname{Var}(X)$ and standard deviation σ_{X} are defined as:

$$
\operatorname{Var}(X)=\sigma_{X}^{2}=\mathrm{E}\left[(X-\bar{X})^{2}\right]=\mathrm{E}\left[X^{2}\right]-\bar{X}^{2}
$$

Covariance: The covariance of two random variables $\operatorname{Cov}(X, Y)$ is defined:

$$
\operatorname{Cov}(X, Y)=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]
$$

and if X, Y are independent, $\operatorname{Cov}(X, Y)=0$.

Useful Sums:

$$
\sum_{k=1}^{n} k^{m}=\frac{n^{m+1}}{m+1}+O\left(n^{m}\right) \quad \sum_{k=0}^{\infty} a^{k}=\frac{1}{1-a} \quad \sum_{k=1}^{n} \frac{1}{k}=H_{n} \approx \ln n \quad \sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Exponentials and Stirling:

$$
\left(1+\frac{1}{n}\right)^{n} \approx e \quad\left(1-\frac{1}{n}\right)^{n} \approx e^{-1} \quad n!=\sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n}\left(1+\frac{1}{12 n}+O\left(\frac{1}{n^{2}}\right)\right)
$$

Binomial Distribution: with parameters n and p :

$$
\operatorname{Pr}[X=k]=\binom{n}{k} p^{k}(1-p)^{n-k} \text { and }\binom{n}{k} \text { is also the coefficient of } x^{k} \text { in }(1+x)^{n}
$$

with $\mathrm{E}[X]=n p$ and $\operatorname{Var}(x)=n p(1-p)$.
Poisson Distribution: with parameter λ :

$$
\operatorname{Pr}[X=k]=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

with $\mathrm{E}[X]=\lambda$ and $\operatorname{Var}(X)=\lambda$.
Geometric Distribution: with parameter p :

$$
\operatorname{Pr}[X=k]=(1-p)^{k-1} p
$$

where $\mathrm{E}[X]=1 / p$ and $\operatorname{Var}(X)=(1-p) / p^{2}$.
Markov Bound: For X a non-negative random variable:

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}
$$

Chebyshev Bound: For X any random variable:

$$
\operatorname{Pr}\left[|X-\bar{X}| \geq t \sigma_{X}\right] \leq \frac{1}{t^{2}} \quad \text { or } \quad \operatorname{Pr}[|X-\bar{X}| \geq s] \leq \frac{\operatorname{Var}(X)}{s^{2}}
$$

Chernoff lower tail bound: For X any random variable which is a sum of independent Poisson trials with $\mathrm{E}[X]=\mu$ and $\delta \in(0,1]$:

$$
\operatorname{Pr}[X<(1-\delta) \mu]<\left(\frac{e^{-\delta}}{(1-\delta)^{(1-\delta)}}\right)^{\mu}<\exp \left(-\mu \delta^{2} / 2\right)
$$

Chernoff upper tail bound: For X any random variable which is a sum of independent Poisson trials with $\mathrm{E}[X]=\mu$ and $\delta>0$:

$$
\operatorname{Pr}[X>(1+\delta) \mu]<\left(\frac{e^{\delta}}{(1+\delta)^{(1+\delta)}}\right)^{\mu}<\left\{\begin{array}{l}
\exp \left(-\mu \delta^{2} / 4\right) \text { for } \delta \leq 2 e-1 \\
2^{-\delta \mu} \text { for } \delta>2 e-1
\end{array}\right.
$$

Inclusion/Exclusion: For a family of events E_{i}, define $p_{i}=\operatorname{Pr}\left[E_{i}\right], p_{i j}=\operatorname{Pr}\left[E_{i} \wedge E_{j}\right]$ and so on. Now define $S_{1}=\sum_{i} p_{i}, S_{2}=\sum_{i j} p_{i j}$ etc.
$\operatorname{Pr}\left[\right.$ at least k of the E_{i} occur $]=S_{k}-\binom{k}{k-1} S_{k+1}+\binom{k+1}{k-1} S_{k+2}-\binom{k+2}{k-1} S_{k+3}+\cdots \pm\binom{ n-1}{k-1} S_{n}$
$\operatorname{Pr}\left[\right.$ exactly k of the E_{i} occur $]=S_{k}-\binom{k+1}{k} S_{k+1}+\binom{k+2}{k} S_{k+2}-\binom{k+3}{k} S_{k+3}+\cdots \pm\binom{ n}{k} S_{n}$
Birthday paradox: If m balls tossed randomly into n bins, probability of two in one bin is $>1-\exp (-m(m-1) / 2 n)$, and is close to 1 for $m \geq \sqrt{2 n}$.

Coupon Collecting: If m balls tossed randomly into n bins, expected number of balls to hit all the bins is $n H_{n} \approx n \ln n$.

General Occupancy: If m balls tossed into n bins, the number of balls in bin 1 has a binomial distribution with parameters $(m, 1 / n)$. For large m, n and small k, it is well approximated by a Poisson distribution with parameter $\lambda=m / n$. In other words, if X is the number of balls in bin 1 :

$$
\operatorname{Pr}[X=k]=\binom{m}{k} \frac{1}{n}\left(1-\frac{1}{n}\right)^{m-k} \approx \frac{(m / n)^{k} \exp (-m / n)}{k!}
$$

