Solutions for CS174 Homework 1

Solution 1. Pr[Y =1]=1/3,Pr[Y = 1|X = 1] =2/3,s0 Pr[Y = 1|X = 1] # Pr[Y =1].
Therefore X and Y are not independent.

E[XY]=1-PrX=1,Y=1]+0-(Pr[X =1,Y =0+ Pr[X =0,Y = 1]+ Pr[X =0,Y =
0]) = 1/3.

Solution 2. Divisibility by 2 and 3 are fully determined by the value of an integer mod 6.
So let n = 6k + ¢, where k and ¢ are integers and 0 < ¢ < 5. To compute the probabilities,
we need to do a case analysis. First notice that the equality Pr[Y = 1] = Pr[Y =1|Z = 1]
is enough for independence. If this equality holds, then by complement it follows that
Pr[Y = 0] = Pr[Y =0|Z = 1] = 1 — Pr[Y = 1]. You can also show from the definition of
conditional probability that

PrlY =1]=Pr[Y =1|Z=1] = Pr[Y =1]=Pr[Y =1|Z =0

that is, if a probability is unchanged when restricted to a subspace (in this case Z = 1),
then it is also unchanged when restricted to the complement of that subspace. In general if
PrlY = 1] = Pr[Y = 1|Z = 1], we have equality between all the conditional probability
conditions needed for independence.

Now back to the case analysis, if i = 0, i.e. n = 6k we have

3k 1 . k 1
Pr[Y—l]—G—k—§ while PY[Y—1|Z—1]—ﬁ—§
as long as k > 1, so n = 6k gives independence. Now for ¢ = 1:

3k
6k + 1

k 1
PrlY =1] = while PrlY =1|Z7=1]=— = 3

2k

which doesnt match, so n = 6k + 1 doesnt work (there is a sole exception at k = 0 where
some denominators vanish). Now for i = 2

k+1 1 k 1
Sk = — while Pr[Y:1|Z:1]:_:5

Py =1=5733"3 ok

which matches. Surprisingly enough, n = 6k + 2 works as well. For ¢ = 3:

C3k+1 k

PrlY =1] = oh 3 while PrlY =1|Z7=1]= 1

which fails to match and n = 6k + 3 is no good. For ¢ = 4:

+2 1 2
- — - while Py =1/Z=1]=
i 4 g While Pr | =9

PrlY =1]

which fails, and finally + = 5 gives:

3k 42 k

PrlY =1] = T while PrlY =1|Z7=1]= 1

which fails again. So the only numbers for which Y and Z are independent are 1, 2 or 6k
or 6k +2fork=1,2,....

Solution 3. Pr[Y =1|X =1] =0,Pr[Y = 1] =1/52, so X and Y are not independent.

Solution 4. Consider pairs of coin tosses. We discard HH or TT, and if HT appears,
count it as 1, otherwise when TH appears count it as 0. Because HT and TH occurs
equally likely, it represents a fair coin.

Solution 5. Consider an array of elements Afi] =i,1 < i < n. The simplest implementation
of randomized bubblesort would be:

for i =1L:n-1,
for j=1:n-i,
swap A[j] and A[j + 1] with probability 1/2
end
end

Such an algorithm will generate random permutations but not with uniform distribution.
For example the first element will have a higher probability to stay in the first half of the
array than go to the second half of the array. To get a uniform distribution, we would need
to do something that simulates the probabilities of bubble sort making swaps when it is
sorting a random permutation as input.

Suppose we ran bubblesort on a random permutation, i.e. A[i] is initially Aq) for
a random 7. Let p;; be the probability that bubblesort does a swap as a function of the
algorithm indices ¢ and j. Suppose first that i = 1 and 7 = 1. The algorithm is comparing two
random values so p;; = 1/2. Now consider the general case where i = 1 and j is arbitrary.
Through its bubbling process, bubblesort guarantees that A[j] contains the maximum of
All],..., A[j]. No swap will happen with A[j + 1] if the value of A[j + 1] (which is random
because we havent seen it before) is bigger than A[l],... , A[j]. In other words, no swap
happens iff A[j + 1] is the maximum of A[l],..., A[j + 1]. From our analysis of random
permutations we know that that probability that a given value occurs last (has largest value
in this case) in a random permutation of j + 1 values is 1/(j + 1). That is the probability
of not swapping A[j] and A[j + 1]. So the probability that there is a swap when i = 1 is
piy=J/(j+1).

After the first iteration 4, bubblesort has bubbled the maximum element into A[n] the
other elements are in A[1],..., A[n — 1], and in the same order as in the original data. In

2

other words, they are in random order. So the second iteration (i = 2) of the main loops
swaps elements with the same probability ps; = j/(j + 1). The same argument applies for
larger values of 7, so we conclude that p;; in fact only depends on j, so we write it as p; and
it has the form:

pi=3/(G+1)

So to generate uniformly distributed random permutations, we can use the following algo-
rithm: Start with an array of elements Afi] =i,1 <i < n.

for i =L:n-1,
for j=1:n-i,
swap A[j] and A[j + 1] with probability j/(j + 1)
end
end

Does this really generate a random permutation? We can prove it by determining the
probability that an element initially in position A[k] gets bubbled all the way to the end.
That happens iff A[k] is not swapped with A[k— 1], but it is swapped with all later elements.
The probability of this is

1k (k41 (n—-1) 1
(l_pk—l)PkpkH"'pn—E(k_i_l) (k+2)“' — =

which is a “telescoping” product, where all but the end terms cancel. Thus every element
has probability 1/n of being swapped to the end on the first iteration i = 1. By similar
reasoning, on the i = 2 iteration, every element has probability 1/(n — 1) of being swapped
to the end. These are exactly the probabilities needed to generate a random permutation.
In fact, you should be able to see a close connection now between the bubblesort random
generator and the “selection sort” random generator we did in class. Both have probability
of 1/k of moving any element in a subarray of k& elements to the end.

You may be concerned that this generator is not “consistent”. It may not swap two
elements (e.g. A[l] and A[2]) on several passes, but then swap them on a later iteration, so
that it is not exactly simulating bubblesort’s swaps on some real input. It doesnt matter.
Because it always places a random element of the current subarray in the last position, it is
guaranteed to generate random permutations.

The running time is easily seen to be O(n?) in all cases.

