CS174 Sp2001

1. Assume the secret is X. Assuming the two ZKPs are valid, the prover has to send values w_1 and w_2 satisfying:

$$w_1 = v + b_1 X \pmod{p-1}$$
$$w_2 = v + b_2 X \pmod{p-1}$$

we can therefore recover X from the known quantities:

$$X = (w_1 - w_2)(b_1 - b_2)^{-1} (\text{mod } p - 1)$$

assuming $b_1 \neq b_2$, which is almost surely true.

2. Let *M* be the original message, and the El-Gamal encrypted version of it be $(w = g^r, v = Mh^r) \pmod{p}$ for some random secret *r*. Let *S* be the discrete log of *h* wrt *g* so that $g^S = h$. Assume *S* has been Shamir secret-shared as *n* pieces S_1, \ldots, S_n where any t + 1 pieces are enough to reconstruct S. Assume wlog that the first t + 1 users cooperate and send the server:

$$y_i = w^{S_i}$$

then this doesn't expose information about S_i so long as discrete log is hard. Let $L_i(0)$ be the Lagrange polynomial coefficients needed to reconstruct S from the S_i , i.e. $S = \sum_{i=1,\dots,t+1} S_i L_i(0)$. The server computes:

$$y = \prod_{i=1}^{t+1} y_i^{L_i(0)} = \prod_{i=1}^{t+1} w^{S_i L_i(0)} = w^S$$

and can then recover the message M as $vy^{-1} \pmod{p}$.