1. Each secret share s_{i} of a secret s is a pair x_{i}, y_{i} where $y_{i}=p\left(x_{i}\right)$ and

$$
p(x)=r_{t} x^{t}+\cdots+r_{1} x+s(\bmod p)
$$

is a polynomial whose coefficients r_{1}, \ldots, r_{t} are chosen independently and uniformly at random from \mathbb{Z}_{p}. As we did for addition, assume that all secrets are shared at the same evaluation points x_{1}, \ldots, x_{n}. Then we can drop references to the x_{i}, and write (by slight abuse of notation) $s_{i}=y_{i}$.
Suppose then that secrets a and b are shared as a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n}. The reconstruction function h is:

$$
s=h\left(s_{1}, \ldots, s_{t+1}\right)=\sum_{i=1}^{t+1} s_{i} L_{i}
$$

and the Lagrange polynomial coefficient L_{i} (which we wrote as $L_{i}(0)$ before) is

$$
L_{i}=\frac{\prod_{j \neq i}-x_{j}}{\prod_{j \neq i}\left(x_{i}-x_{j}\right)}
$$

the question asks to compare the values of $h\left(a_{1} b_{1}, \ldots, a_{t+1} b_{t+1}\right)$ and $a b$, and from the above:

$$
h\left(a_{1} b_{1}, \ldots, a_{t+1} b_{t+1}\right)=\sum_{i=1}^{t+1} a_{i} b_{i} L_{i}
$$

to prove that this is not equal to $a b$ we need only a counter-example. Pick $t=1, x_{1}=-1$, $x_{2}=1$, whence $L_{1}=L_{2}=1 / 2$. Therefore $h\left(a_{1} b_{1}, a_{2} b_{2}\right)=1 / 2\left(a_{1} b_{1}+a_{2} b_{2}\right)$. But $a b$ is the product of $1 / 2\left(a_{1}+a_{2}\right)$ and $1 / 2\left(b_{1}+b_{2}\right)$. Clearly:

$$
1 / 2\left(a_{1} b_{1}+a_{2} b_{2}\right) \neq 1 / 4\left(a_{1}+a_{2}\right)\left(b_{1}+b_{2}\right)
$$

2. Notice that $h\left(s_{1}, \ldots, s_{t+1}\right)$ is a linear function from the formula above, that is, $h\left(\lambda s_{1}, \ldots, \lambda s_{t+1}\right)=$ $\lambda h\left(s_{1}, \ldots, s_{t+1}\right)(\bmod p)$. So $h\left(k a_{1}, \ldots, k a_{t+1}\right)=k a(\bmod p)$. Therefore multiplication by a public scalar works with secret-sharing.
3. Let u and v be two numbers bit-committed as $A=g^{x} h^{u}$ and $B=g^{y} h^{v}$. We give two ZKPs, one that $(u=1) \vee(v=1)$ and the other that $(u=0) \vee(v=0)$. If both conditions hold, then exactly one of the numbers is zero, and the other is one. First, for the proof that $(u=1) \vee(v=1)$. In reality, it will be the case that either $u=0, v=1$ or vice versa. Suppose the first case holds, then we will need a simulation of a proof that $u=1$ and a real proof that $v=1$, and we will combine them:
(a) Prover picks a_{1} (for real proof that $v=1$) at random and sends $\alpha_{1}=g^{a_{1}}(\bmod p)$ to verifier. Prover picks random c_{0} and w_{0} and sets $\alpha_{0}=g^{w_{0}}\left(A h^{-1}\right)^{-c_{0}}(\bmod p)$, and sends α_{0} to verifier (for phoney proof that $u=1$).
(b) Verifier picks $c(\bmod q)$ at random, and sends it to prover.
(c) Prover computes $c_{1}=c-c_{0}$, and then $w_{1}=y c_{1}+a_{1}(\bmod q)$. Prover sends c_{0}, c_{1}, and w_{0} and w_{1} to verifier.
(d) Verifier checks that $c=c_{0}+c_{1}$ and that

$$
\begin{aligned}
& g^{w_{0}}=\alpha_{0}\left(A h^{-1}\right)^{c_{0}}(\bmod p) \\
& g^{w_{1}}=\alpha_{1}\left(B h^{-1}\right)^{c_{1}}(\bmod p)
\end{aligned}
$$

For the proof for the case where $u=1$ and $v=0$ is similar, we flip the correct and phoney proofs:
(a) Prover picks a_{0} (for real proof that $u=1$) at random and sends $\alpha_{0}=g^{a_{0}}(\bmod p)$ to verifier. Prover picks random c_{1} and w_{1} and sets $\alpha_{1}=g^{w_{1}}\left(A h^{-1}\right)^{-c_{1}}(\bmod p)$, and sends α_{1} to verifier (for phoney proof that $v=1$).
(b) Verifier picks $c(\bmod q)$ at random, and sends it to prover.
(c) Prover computes $c_{0}=c-c_{1}$, and then $w_{0}=y c_{0}+a_{0}(\bmod q)$. Prover sends c_{0}, c_{1}, and w_{0} and w_{1} to verifier.
(d) Verifier checks that $c=c_{0}+c_{1}$ and that

$$
\begin{aligned}
& g^{w_{0}}=\alpha_{0}\left(A h^{-1}\right)^{c_{0}}(\bmod p) \\
& g^{w_{1}}=\alpha_{1}\left(B h^{-1}\right)^{c_{1}}(\bmod p)
\end{aligned}
$$

To construct a proof that $u=0$ or $v=0$, we repeat the above proofs, but replace $\left(A h^{-1}\right)$ with (A) and $\left(B h^{-1}\right)$ with (B).

Second Method This method is a little simpler. Notice that if exactly one of u, v is one and the other zero, then $u+v=1$. Use the proof given in class to show that u is either zero or one. Then by enforcing the constraint that $u+v=1$, we force v to be either zero or one. To enforce the constraint, note that

$$
A B h^{-1}=g^{x} h^{u} g^{y} h^{v} h^{-1}=g^{(x+y)} h^{(u+v-1)}
$$

and then we can give a zero-knowledge proof that we know the discrete log wrt g of $A B h^{-1}$. That proves that $A B h^{-1}$ is a pure power of g (assuming we dont know the \log of h), or in other words $u+v-1=0$. This proof is just Shamir's discrete log proof:
(a) Prover picks a at random, and sends $\alpha=g^{a}(\bmod p)$ to verifier.
(b) Verifier picks c at random from \mathbb{Z}_{q} and sends to prover.
(c) Prover sends $w=c(x+y)+a(\bmod q)$ to verifier.
(d) Verifier checks that $g^{w}=\alpha\left(A B h^{-1}\right)^{c}(\bmod p)$.

