Solutions for CS174 Homework 2

Solution 1. Assume $\lceil\log n\rceil=m$. Then to get a biased coin with probability k / n of heads, we simply toss the fair coin m times, and get the binary representation of the string from the m tosses. Let the binary string be x, if $x<k$, then we say the outcome of the biased coin is head; if $k \leq x<n$, we say the outcome of the biased coin is tail; otherwise we discard this experiment and restart.

Solution 2. The total number of random permutation is $n!$. The total number of random permutation where 2 and 3 are adjacent is equal to the total number of random permutation of $1, \ldots, \mathrm{n}-1$ where we glue 2 and 3 together as one element. Hence the number of this glued random permutation is $(n-1)$!. So the probability that 2 and 3 are adjacent in a random permutation is $\frac{2 \cdot(n-1)!}{n!}=\frac{2}{n}$.

Solution 3a. Let x_{1}, \ldots, x_{n} represent the n people. Let $\left(x_{i}^{1}, x_{j}^{1}\right)$ denote that x_{i} is to the right of x_{j} in lunch, and $\left(x_{i}^{2}, x_{j}^{2}\right)$ denote that x_{i} is to the right of x_{j} in dinner, and $\left(x_{i}, x_{j}\right)$ denote that x_{i} is to the right of x_{j} in both lunch and dinner. Because the lunch setting and the dinner setting are independent, $\operatorname{Pr}\left[\left(x_{i}, x_{j}\right)\right]=\operatorname{Pr}\left[\left(x_{i}^{1}, x_{j}^{1}\right)\right] \cdot \operatorname{Pr}\left[\left(x_{i}^{2}, x_{j}^{2}\right)\right]$.

Let Y denote the probability that no-one is to the right of someone they were to the right of at lunch. We can see that $Y=1-\operatorname{Pr}\left[\bigvee_{i, j}\left(x_{i}, x_{j}\right)\right]$.

By using the inclusion-exclusion property, we can see that

$$
\begin{aligned}
\operatorname{Pr}\left[\bigvee\left(x_{i}, x_{j}\right)\right]= & \sum_{i, j} \operatorname{Pr}\left[\left(x_{i}, x_{j}\right)\right]-\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge\left(x_{i_{2}}, x_{j_{2}}\right)\right] \\
& +\cdots+(-1)^{n-1} \sum_{i_{1}, j_{1}, \ldots, i_{n}, j_{n}} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge \cdots \wedge\left(x_{i_{n}}, x_{j_{n}}\right)\right]
\end{aligned}
$$

The total number of circular seating with n people is $n!/ n=(n-1)$!. Similar to problem 2, the total number of circular seating with x_{i} to the right of x_{j} is $(n-2)$!. So $\operatorname{Pr}\left[\left(x_{i}, x_{j}\right)\right]=\left(\frac{(n-2)!}{(n-1)!}\right)^{2}=\frac{1}{(n-1)^{2}}$. There are $n(n-1)$ combinations of x_{i} and x_{j}, so

$$
\sum_{i, j} \operatorname{Pr}\left[\left(x_{i}, x_{j}\right)\right]=n(n-1) \frac{1}{(n-1)^{2}}=\frac{n}{n-1} \sim 1, \text { as } n \text { goes to large. }
$$

To compute $\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge\left(x_{i_{2}}, x_{j_{2}}\right)\right]$, there are two cases: either $x_{j_{1}}=x_{i_{2}}$ or $x_{j_{1}} \neq x_{i_{2}}$:

- For the first case where $x_{j_{1}}=x_{i_{2}}$,

$$
\operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge\left(x_{i_{2}}, x_{j_{2}}\right)\right]=\left(\frac{(n-3)!}{(n-1)!}\right)^{2}=\frac{1}{((n-1)(n-2))^{2}}
$$

And there are $n(n-1)(n-2)$ possible combinations.

- For the second case where $x_{j_{1}} \neq x_{i_{2}}$,

$$
\operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge\left(x_{i_{2}}, x_{j_{2}}\right)\right]=\left(\frac{(n-3)!}{(n-1)!}\right)^{2}=\frac{1}{((n-1)(n-2))^{2}}
$$

And there are $n(n-1)(n-2)(n-3) / 2$ possible combinations.
So

$$
\begin{aligned}
\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge\left(x_{i_{2}}, x_{j_{2}}\right)\right] & =\frac{n(n-1)(n-2)+n(n-1)(n-2)(n-3) / 2}{((n-1)(n-2))^{2}} \\
& =\frac{n+n(n-3) / 2}{(n-1)(n-2)} \\
& \rightarrow \frac{1}{2}, \text { as } n \text { goes to } \infty
\end{aligned}
$$

Similarly,
$\sum_{i_{1}, j_{1}, \ldots, i_{k}, j_{k}} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge \cdots\left(x_{i_{k}}, x_{j_{k}}\right)\right]=\left(\frac{(n-1-k)!}{(n-1)!}\right)^{2} \cdot\left\{\frac{n!}{(n-2 k)!k!}+o\left(n^{2 k}\right)\right.$ $\rightarrow \frac{1}{k!}$, as n goes to ∞.

Hence, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\bigvee_{i, j}\left(x_{i}, x_{j}\right)\right]=1-\frac{1}{2!}+\frac{1}{3!}+\cdots+(-1)^{k-1} \frac{1}{k!}+\cdots \sim$ $1-e^{-1} \doteq 0.632$.

So the probability that no one is to the right of someone they were to the right of at lunch is $1-0.632=0.378$.

Solution 3b. Let $x_{i} \sim x_{j}$ denote that x_{i} is to the right of x_{j} at lunch and x_{i} and x_{j} are neighbours at dinner. Hence

$$
\operatorname{Pr}\left[x_{i} \sim x_{j}\right]=\operatorname{Pr}\left[\left(x_{i}^{1}, x_{j}^{1}\right)\right] \cdot\left(\operatorname{Pr}\left[\left(x_{i}^{2}, x_{j}^{2}\right)\right]+\operatorname{Pr}\left[\left(x_{j}^{2}, x_{i}^{2}\right)\right]\right)=\frac{2}{(n-1)^{2}}
$$

Similarly,

$$
\operatorname{Pr}\left[\left(x_{i_{1}} \sim x_{j_{1}}\right) \wedge \cdots\left(x_{i_{k}} \sim x_{j_{k}}\right)\right]=2^{k} \operatorname{Pr}\left[\left(x_{i_{1}}, x_{j_{1}}\right) \wedge \cdots\left(x_{i_{k}}, x_{j_{k}}\right)\right]
$$

So $\sum_{i_{1}, j_{1}, \ldots, i_{k}, j_{k}} \operatorname{Pr}\left[\left(x_{i_{1}} \sim x_{j_{1}}\right) \wedge \cdots\left(x_{i_{k}} \sim x_{j_{k}}\right)\right]=\frac{2^{k}}{k!}$.
Hence, $\lim _{n \rightarrow \infty} \operatorname{Pr}\left[\bigvee_{i, j}\left(x_{i} \sim x_{j}\right)\right]=2-\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\cdots+(-1)^{k-1} \frac{2^{k}}{k!}+\cdots \sim$ $1-e^{-2}$.

So the probability that no one at dinner has a neighbor on the same or other side that they had at lunch is $e^{-2}=0.142$.

Solution 4. From the definition of a poisson distribution, we have $\operatorname{Pr}[X=$ $k]=e^{-\lambda} \frac{\lambda^{k}}{k!}$ and $\operatorname{Pr}[X \geq \lambda]=e^{-\lambda} \sum_{k} \frac{\lambda^{k}}{k!}$.

Now the largest term in the sum $\sum_{k=\lambda, \ldots, \infty} \frac{\lambda^{k}}{k!}$ is $\lambda=k$. Later terms are multiplied by ratios such as $\lambda /(k+j)$ which is less than one, so they are less than this term. Let $t_{k}=\frac{k^{k}}{k!}$. Then

$$
t_{k+1}=t_{k} k /(k+1) \quad t_{k+2}=t_{k+1} k /(k+2) \cdots
$$

On the other hand

$$
t_{k-1}=t_{k} \quad t_{k-2}=t_{k-1}(k-1) / k \quad t_{k-3}=t_{k-2}(k-2) / k \cdots
$$

From these two it follows that

$$
t_{k}=t_{k-1} \quad t_{k+1} \approx t_{k-2} \quad t_{k+2} \approx t_{k-3} \cdots
$$

where the error terms are $O\left(1 / k^{2}\right)$. Now let

$$
S_{a}=\sum_{j=0}^{k} \frac{k^{j}}{j!} \quad S_{b}=\sum_{j=k}^{2 k} \frac{k^{j}}{j!}
$$

For each term t_{k+j} in S_{b} there is a corresponding term t_{k-j-1} in S_{a}. Since the terms are approximately the same, we have $S_{a} \approx S_{b}$. Finally using Chernoff, bounds its clear that

$$
\sum_{j=2 k}^{\infty} \frac{k^{j}}{j!} \approx 0
$$

So it follows that $e^{-k}\left(S_{a}+S_{b}\right) \approx 1$, and therefore $\operatorname{Pr}[X \geq \lambda]=e^{-k} S_{b} \approx 1 / 2$.

