Solutions for CS174 Homework 3

1. (a) Note that here we assume all balls and bins are distinguishable. For each ball, there are n possibilities. So for m balls, there are n^{m} distributions.
(b) The probability that there are k balls in bin 1 is

$$
\binom{m}{k} \frac{1^{k}}{n}\left(1-\frac{1}{n}\right)^{m-k}
$$

and we simply multiply this probability by the number of distributions n^{m} to get

$$
\binom{m}{k}(n-1)^{m-k}
$$

distributions.
(c) We need inclusion-exclusion here. Let E_{i} be the property that bin i is empty. Then $\operatorname{Pr}\left[E_{i}\right]=(1-1 / n)^{m}, \operatorname{Pr}\left[E_{i} \wedge E_{j}\right]=(1-2 / n)^{m}$ etc. and each S_{k} in the inclusion/exclusion formula is

$$
S_{k}=\binom{n}{k}(1-k / n)^{m}
$$

We want exactly two of these events to be true, so the inclusion/exclusion formula is

$$
\operatorname{Pr}[\text { two empty bins }]=S_{2}-\binom{3}{2} S_{3}+\cdots+(-1)^{k}\binom{k}{2} S_{k}+\cdots+(-1)^{n}\binom{n}{2} S_{n}
$$

and substituting we have

$$
\operatorname{Pr}[\text { two empty bins }]=\sum_{k=2}^{n}(-1)^{k}\binom{k}{2}\binom{n}{k}(1-k / n)^{m}
$$

which rewrites to

$$
\operatorname{Pr}[\text { two empty bins }]=\sum_{k=2}^{n}(-1)^{k}\binom{n}{2, k-2, n-k}(1-k / n)^{m}
$$

using a familar approximation, we can write $(1-k / n)^{m} \approx e^{-m k / n}$ or $e^{-\lambda k}$ where $\lambda=$ m / n, and the above becomes:

$$
\operatorname{Pr}[\text { two empty bins }]=\sum_{k=2}^{n}(-1)^{k}\binom{n}{2, k-2, n-k} e^{-\lambda k}
$$

which is now part of the expansion of a trinomial (you can prove this by applying binomial expansion twice). The terms correspond to the coefficient of x^{2} in the expansion of

$$
\left(-x e^{-\lambda}+1-e^{-\lambda}\right)^{n}
$$

which we can write directly as:

$$
\binom{n}{2} e^{-2 \lambda}\left(1-e^{-\lambda}\right)^{n-2}
$$

finally, we multiply by n^{m} to count the number of distributions with this property:

$$
n^{m}\binom{n}{2} e^{-2 \lambda}\left(1-e^{-\lambda}\right)^{n-2}
$$

2. Assume the hash table has size k. From the birthday paradox computation,

$$
\operatorname{Pr}[\text { all } \mathrm{k} \text { bins have less than } 1 \text { element }] \leq \exp (-n(n-1) / 2 k)
$$

So when $\exp (-n(n-1) / 2 k)<1 / 2$, the hash table has probability at least a half for a collision. So $k<\frac{n(n-1)}{\ln 2}$.
3. Let X be the number of heads got after 1000 tosses of a fair coin. So $\mathrm{E}[X]=500, \operatorname{Var}[X]=$ $1000 * 1 / 2 * 1 / 2=250$.
(a) Using Markov bound, $\operatorname{Pr}[X>800]<\frac{E[X]}{800}=\frac{5}{8}=0.625$.
(b) Because the probability that there are more than 800 heads equals to the probability that there are more than 800 tails, so $\operatorname{Pr}[X>800]=\operatorname{Pr}[X<200]$. Using Chebyshev bound,

$$
\operatorname{Pr}[X>800]=\frac{1}{2} \operatorname{Pr}[|X-500|>300]<\frac{1}{2} \cdot \frac{250}{300^{2}}=\frac{1}{72} \doteq 0.014
$$

4. (a) From lecture $5, \operatorname{Pr}\left[X_{i} \geq 20\right] \leq\left(\frac{m e}{n k}\right)^{k} \cdot \frac{1}{1-\frac{m e}{n k}}=1.8 * 10^{-5}$.
$\mathrm{E}\left[X_{i}\right]=\operatorname{Var}\left[X_{i}\right]=\lambda=4$.
Using Markov bound, $\operatorname{Pr}\left[X_{i} \geq 20\right] \leq \frac{\mathrm{E}\left[X_{i}\right]}{20}=0.2$.
Using Chebyshev bound, $\operatorname{Pr}\left[X_{i} \geq 20\right] \leq \operatorname{Pr}\left[\left|X_{i}-4\right| \geq 16\right] \leq \frac{\operatorname{Var}\left[X_{i}\right]}{16^{2}}=0.0156$.
(b) $\operatorname{Pr}\left[X_{i} \geq k\right] \leq\left(\frac{m e}{n k}\right)^{k} \cdot \frac{1}{1-\frac{m e}{n k}}=O\left(k^{-k}\right)$.

Using Markov bound, $\operatorname{Pr}\left[X_{i} \geq k\right] \leq \frac{\mathrm{E}\left[X_{i}\right]}{k}=O\left(k^{-1}\right)$.
Using Chebyshev bound, $\operatorname{Pr}\left[X_{i} \geq k\right] \leq \operatorname{Pr}\left[\left|X_{i}-\mathrm{E}\left[X_{i}\right]\right| \geq k-\mathrm{E}\left[X_{i}\right]\right] \leq \frac{\operatorname{Var}\left[X_{i}\right]}{\left(k-\mathrm{E}\left[X_{i}\right]\right)^{2}}=$ $O\left(k^{-2}\right)$.

