Solutions for CS174 Homework 4

Solution 1. Consider a final stable marriage. Because all the males have the same preference ordering, then we can assign each female a unique number k representing her ranking on the lists. Female k has a spouse, and she must be the k-th on his ordering list. This male must have proposed k times. So in total, all males together proposed $\sum_{1 \leq k \leq n} k=n(n+1) / 2$ times.

Solution 2. From the definition of expected values, we obtain $\mathrm{E}[X]=\sum_{1 \leq k \leq n} \operatorname{Pr}[X=k] \cdot k$.
Because $\operatorname{Pr}[X \geq k]=\sum_{k \leq j \leq n} \operatorname{Pr}[X=j]$, we have

$$
\begin{aligned}
\sum_{1 \leq k \leq n} \operatorname{Pr}[X \geq k] & =\sum_{1 \leq k \leq n} \sum_{k \leq j \leq n} \operatorname{Pr}[X=j] \\
& =\sum_{1 \leq j \leq n} \sum_{1 \leq k \leq j} \operatorname{Pr}[X=j] \\
& =\sum_{1 \leq j \leq n} \operatorname{Pr}[X=j] \cdot j
\end{aligned}
$$

Hence, $\mathrm{E}[X]=\sum_{1 \leq k \leq n} \operatorname{Pr}[X \geq k]$.

Solution 3. There are n ! possible true permutations, and n^{n} possible n-permutations. Each permuatation is equaly likely. So the probability that a random n-permutation is a true permutation is $\frac{n!}{n^{n}} \sim \frac{\sqrt{2 \pi n}}{e^{n}}$.

Solution 4. (a) Think of this as labelling every ball from $1, \ldots, m$ with a bin number from $\{1, \ldots, n\}$. There are n^{m} such labellings, and each is equally likely (probability $\left.(1 / n)^{m}\right)$. The number of labellings which have m_{1} balls in bin 1 is $\binom{m}{m_{1}}$ which can be specified by the subset of balls which receive a bin number " 1 ". So the probability is

$$
\binom{m}{m_{1}}\left(\frac{1}{n}\right)^{m}=\frac{m!}{m_{1}!m_{2}!}\left(\frac{1}{n}\right)^{m}
$$

(b) If we apply the same argument twice, the number of labellings with m_{1} ones is $\binom{m}{m_{1}}$ and there are $m-m_{1}=m_{2}+m_{3}$ balls labelled "not 1". We can further divide the balls labelled "not 1" into
groups labelled two and three. The total probability of the specified counts in bins $1,2,3$ is

$$
\binom{m}{m_{1}}\binom{m-m_{1}}{m_{2}}\left(\frac{1}{n}\right)^{m}=\frac{m!}{m_{1}!m_{2}!m_{3}!}\left(\frac{1}{n}\right)^{m}
$$

(c) Continuing inductively, The probability that the distribution of m balls into n bins giving m_{1}, \ldots, m_{n} balls in bin 1 through bin n, where $m_{1}+\cdots+m_{n}=m$, is

$$
\binom{m}{m_{1}}\binom{m-m_{1}}{m_{2}} \cdots\binom{m-m_{1} \cdots-m_{n-2}}{m_{n-1}}\left(\frac{1}{n}\right)^{m}=\frac{m!}{m_{1}!\cdots m_{n}!}\left(\frac{1}{n}\right)^{m}
$$

Notice that this result contains parts (a) and (b) as special cases. That is, if we substitute $m_{n}=$ $m_{n-1}=\cdots m_{4}=0$ into this formula, since $0!=1$, it simplifies to either (a) if $m_{3}=0$ or (b) if $m_{3} \neq 0$.

