
Solutions for CS174 Homework 4

Solution 1. Consider a �nal stable marriage. Because all the males have the same preference

ordering, then we can assign each female a unique number k representing her ranking on the lists.

Female k has a spouse, and she must be the k-th on his ordering list. This male must have proposed

k times. So in total, all males together proposed
P

1�k�n k = n(n+ 1)=2 times.

Solution 2. From the de�nition of expected values, we obtain E[X] =
P

1�k�n Pr[X = k] � k:

Because Pr[X � k] =
P

k�j�nPr[X = j]; we have
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Hence, E[X] =
P

1�k�n Pr[X � k]:

Solution 3. There are n! possible true permutations, and nn possible n-permutations. Each

permuatation is equaly likely. So the probability that a random n-permutation is a true permutation

is n!
nn
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Solution 4. (a) Think of this as labelling every ball from 1; : : : ;m with a bin number from

f1; : : : ; ng. There are nm such labellings, and each is equally likely (probability (1=n)m). The

number of labellings which have m1 balls in bin 1 is
�
m
m1

�
which can be speci�ed by the subset of

balls which receive a bin number \1". So the probability is
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(b) If we apply the same argument twice, the number of labellings with m1 ones is
�
m
m1

�
and there

are m�m1 = m2+m3 balls labelled \not 1". We can further divide the balls labelled \not 1" into
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groups labelled two and three. The total probability of the speci�ed counts in bins 1, 2, 3 is
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(c) Continuing inductively, The probability that the distribution of m balls into n bins giving

m1; : : : ;mn balls in bin 1 through bin n, where m1 + � � �+mn = m; is
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Notice that this result contains parts (a) and (b) as special cases. That is, if we substitute mn =

mn�1 = � � �m4 = 0 into this formula, since 0! = 1, it simpli�es to either (a) if m3 = 0 or (b) if

m3 6= 0.
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