Solutions for CS174 Homework 2

Solution 1. As in the lecture notes, let X_k be the number of random edges added while there are k connected components, until there are k-1 connected components. Let X be the number of edges added to the graph in total until the graph has \sqrt{n} or fewer connected components. So $E[X] = \sum_{\sqrt{n} \le k \le n} E[X_k] \le \sum_{\sqrt{n} \le k \le n} \frac{n-1}{k-1} = (n-1)(H_{n-1} - H_{\sqrt{n}-1}) \sim (n \ln n)/2.$

For the variance, $\operatorname{Var}[X] = \sum_{\sqrt{n} \le k \le n} \operatorname{Var}[X_k] \le \sum_{1 \le k \le n} \operatorname{Var}[X_k]$. From lecture 9, the latter sum is approximately $n^2 \pi^2/6$. Therefore σ_X is at most $n\pi/\sqrt{6}$.

To Apply Chebyshev, we set the probability of exceeding the mean at 0.01, then t = 10 in the Chebyshev formula: $\Pr[|X - \overline{X}| \ge t\sigma_x] \le \frac{1}{t^2}$, so $X \ge (n \ln n)/2 + 10n\pi/\sqrt{6}$

Solution 2. The definition of covariance is Cov[X, Y] = E[XY] - E[X]E[Y]. (a) It's easy to see that E[X] = E[Y] = 1/2, Var[X] = Var[Y] = 1/4. And Pr[XY = 1] = 1/3, Pr[XY = 0] = 2/3. So E[XY] = 1/3, and Cov[X, Y] = 1/12. (b) Var[X + Y] = Var[X] + Var[Y] + Cov[X, Y] = 7/12.

Solution 3. As in the lecture notes, define X_s for each subset $S \subset V$ of 5 vertices as: $X_s = 1$ if S are the vertices of a 5-clique, and $X_s = 0$ otherwise. So $X = \sum X_s$ is the total number of 5-cliques in the graph, and $E[X] = {n \choose 5} p^{10} \approx n^5 p^{10}/120$.

At the threshold probability, E[X] is close to 1, so the threshold value is $p_0 = 120^{0.1} n^{-0.5} \approx 1.6 n^{-0.5}$.

Solution 4. Let X to denote the sum of the 1000 tosses. E[X] = 3500. $Var[X] = 1000 \times ((1 - 3.5)^2 + (2 - 3.5)^2 + (3 - 3.5)^2 + (4 - 3.5)^2 + (5 - 3.5)^2 + (6 - 3.5)^2)/6 = 2900$. So using Markov bound, Pr[X > 5000] < 3500/5000 = 0.7;

Using Chebyshev bound, $\Pr[X > 5000] < \Pr[|X - 3500| > 1500] < 2900/(1500^2) = 1.3 \times 10^{-3}$.

Using Chernoff bound, let Y_i be a dice toss that takes value 1/6, 2/6, 3/6, 4/6, 5/6, 1. Thus $E[Y_i] = 3.5/6$. Let Z_i be a bernolli variable with $Pr[Z_i = 1] = 3.5/6$. Note that function $f(x) = e^{tx}$ for t > 0 is convex. For a convex function f, we can see that $E[f(Y_i)] \leq E[f(Z_i)]$. So we can extend

the Chernoff bound to apply to random variables take values in [0, 1]. This bound is called Hoeffding Bound. So $Y = \sum Y_i = X/6$. $\Pr[X > 5000] = \Pr[Y > 5000/6] = \Pr[Y > (1 + 1500/3500)3500/6] < e^{-(3500/6)(1500/3500)^2/4} \doteq e^{-27}$.