## Solutions for CS174 Homework 2

Solution 1. As in the lecture notes, let $X_{k}$ be the number of random edges added while there are $k$ connected components, until there are $k-1$ connected components. Let $X$ be the number of edges added to the graph in total until the graph has $\sqrt{n}$ or fewer connected components. So $\mathrm{E}[X]=\sum_{\sqrt{n} \leq k \leq n} \mathrm{E}\left[X_{k}\right] \leq \sum_{\sqrt{n} \leq k \leq n} \frac{n-1}{k-1}=(n-1)\left(H_{n-1}-H_{\sqrt{n}-1}\right) \sim(n \ln n) / 2$.

For the variance, $\operatorname{Var}[X]=\sum_{\sqrt{n} \leq k \leq n} \operatorname{Var}\left[X_{k}\right] \leq \sum_{1 \leq k \leq n} \operatorname{Var}\left[X_{k}\right]$. From lecture 9, the latter sum is approximately $n^{2} \pi^{2} / 6$. Therefore $\sigma_{X}$ is at most $n \pi / \sqrt{6}$.

To Apply Chebyshev, we set the probability of exceeding the mean at 0.01 , then $t=10$ in the Chebyshev formula: $\operatorname{Pr}\left[|X-\bar{X}| \geq t \sigma_{x}\right] \leq \frac{1}{t^{2}}$, so $X \geq(n \ln n) / 2+10 n \pi / \sqrt{6}$

Solution 2. The definition of covariance is $\operatorname{Cov}[X, Y]=\mathrm{E}[X Y]-\mathrm{E}[X] \mathrm{E}[Y]$.
(a) It's easy to see that $\mathrm{E}[X]=\mathrm{E}[Y]=1 / 2, \operatorname{Var}[X]=\operatorname{Var}[Y]=1 / 4$. And $\operatorname{Pr}[X Y=1]=$ $1 / 3, \operatorname{Pr}[X Y=0]=2 / 3$. So $\mathrm{E}[X Y]=1 / 3$, and $\operatorname{Cov}[X, Y]=1 / 12$.
(b) $\operatorname{Var}[X+Y]=\operatorname{Var}[X]+\operatorname{Var}[Y]+\operatorname{Cov}[X, Y]=7 / 12$.

Solution 3. As in the lecture notes, define $X_{s}$ for each subset $S \subset V$ of 5 vertices as: $X_{s}=1$ if $S$ are the vertices of a 5 -clique, and $X_{s}=0$ otherwise. So $X=\sum X_{s}$ is the total number of 5 -cliques in the graph, and $\mathrm{E}[X]=\binom{n}{5} p^{10} \approx n^{5} p^{10} / 120$.

At the threshold probability, $\mathrm{E}[X]$ is close to 1 , so the threshold value is $p_{0}=120^{0.1} n^{-0.5} \approx$ $1.6 n^{-0.5}$.

Solution 4. Let $X$ to denote the sum of the 1000 tosses. $\mathrm{E}[X]=3500$. $\operatorname{Var}[X]=1000 \times((1-$ $\left.3.5)^{2}+(2-3.5)^{2}+(3-3.5)^{2}+(4-3.5)^{2}+(5-3.5)^{2}+(6-3.5)^{2}\right) / 6=2900$. So using Markov bound, $\operatorname{Pr}[X>5000]<3500 / 5000=0.7$;

Using Chebyshev bound, $\operatorname{Pr}[X>5000]<\operatorname{Pr}[|X-3500|>1500]<2900 /\left(1500^{2}\right)=1.3 \times 10^{-3}$.
Using Chernoff bound, let $Y_{i}$ be a dice toss that takes value $1 / 6,2 / 6,3 / 6,4 / 6,5 / 6,1$. Thus $\mathrm{E}\left[Y_{i}\right]=3.5 / 6$. Let $Z_{i}$ be a bernolli variable with $\operatorname{Pr}\left[Z_{i}=1\right]=3.5 / 6$. Note that function $f(x)=e^{t x}$ for $t>0$ is convex. For a convex function $f$, we can see that $E\left[f\left(Y_{i}\right)\right] \leq E\left[f\left(Z_{i}\right)\right]$. So we can extend
the Chernoff bound to apply to random variables take values in $[0,1]$. This bound is called Hoeffding Bound. So $Y=\sum Y_{i}=X / 6 . \operatorname{Pr}[X>5000]=\operatorname{Pr}[Y>5000 / 6]=\operatorname{Pr}[Y>(1+1500 / 3500) 3500 / 6]<$ $e^{-(3500 / 6)(1500 / 3500)^{2} / 4} \doteq e^{-27}$.

