Solutions for CS174 Homework 6

1. From the lecture notes, $\mathrm{E}\left[\sum H_{i j}\right] \leq n / 2$. If the probability of a given packet is delayed more than $T(n)$ steps is bounded by $2^{-2 n}$, then we can guarantee that all packets reach their destination in time $T(n)$ with probability $1-2^{-n}$.

If we assume $\delta>2 e-1, \operatorname{Pr}\left[\sum H_{i j}>(1+\delta) \mu\right] \leq 2^{-\mu \delta}$. If we set $\mu \delta=2 n$, we get $\delta=4<2 e-1$. So we should use the other formula, where when $\delta \leq 2 e-1, \operatorname{Pr}\left[\sum H_{i j}>\right.$ $(1+\delta) \mu] \leq \exp \left(-\mu \delta^{2} / 4\right)$. We set $\exp \left(-\mu \delta^{2} / 4\right)=2^{-2 n}$, so $\delta=\sqrt{16 \ln 2} \doteq 3.3$. So $T(n)$ should be $(3.3+1) n / 2=2.15 n$.
2. This is equivalent to check whether $A B=I$. Hence we can simply use the matrix multiplication checker program in the lecture notes to check whether $A B=I$. The running time of the checker program is $O\left(n^{2}\right)$.
3. $p\left(a_{11}, \ldots, a_{i j}, \ldots, a_{n n}\right)$ is a multivariate polynomial total degree n. So the program checker simply picks $a_{11}, \ldots, a_{i j}, \ldots, a_{n n}$ uniformly at random from $\{0, \ldots, M-1\}$. We can compute such the determinant of the corresponding matrix A, denoted as $x=|A|$. We then compare the x with the output of the polynomial p. Due to SchwartzZippel theorem, the error bound is n / M. The running time to compute a determinant is $O\left(n^{3}\right)$. So the running time of the program checker is $O\left(n^{3}\right)$.
4. Let b_{i} denote the substring $a_{i+1} \cdots a_{i+k}$. Let $f(a, x)=\sum_{i} a_{i} x^{i} \bmod p$ denote the finger print function. So $f\left(b_{i}, x\right)=\left(f\left(b_{i-1}, x\right)-a_{i}\right) x^{-1}+a_{i+k} x^{k-1} \bmod p$. Thus we can compute $f\left(b_{i}, x\right)$ recursively in $O(n)$ time independent of k.

