Solutions for CS174 Homework 7

1. Solution;

(a) The minimum degree of an internal node is one. Consider the sequence 001001001. At the first level there are three nodes, all with degree 3 . The level 2 boundaries are all in the same place, so each level 1 node has a unique parent. Those parents have only one child.
(b) At each position at level k, the probability of being a transition point is $1 / 2^{(k+1)}$. So in a sequence of n characters, the expected number of transitions is $n / 2^{(k+1)}$.
(c) Let N_{k} denote the expected number of nodes at level k. So $N_{k}=n / 2^{(k+1)}+1$. So the expected number of nodes in the tree is

$$
n+\sum_{1 \leq k \leq \log n-1}\left(\frac{n}{2^{(k+1)}}+1\right)=3 n / 2+o(n)
$$

(d) We can see that any change to one node at leaf level at most requires changes to two consecutive nodes at level k. The level of the tree is about $\log n$. So the number of changes required is bounded by $2 \log _{2} n$.
(e) Inserting m nodes requires inserting about $3 m / 2$ nodes into the tree. Since the m nodes are inserted continuously, the changes required to old nodes in the tree is bounded by $2 \log n$. So the total changes is about $3 m / 2+2 \log n$.

