Solutions for CS174 Homework 8

- For a graph with O(n) edges, the *total work* to contract all the edges is O(n) using a suitable data structure (e.g. union-find). So from the divide-and-conqure algorithm, we have the formula $T(n) = 2T(n/\sqrt{2}) + O(n)$. We know the following lemma holds:

Lemma 0.1. Suppose T(n) satisfies the recurrence relation: $T(n) = aT(n/b) + \Theta(n^{\alpha})$, if n > 1, $T(n) = \Theta(1)$, if n = 1. Let $\beta = \log_b a$. Then $T(n) = \Theta(n^{\beta})$, if $\alpha < \beta$.

It's easy to see that the lemma holds by drawing a recursion tree. So $T(n) = O(n^2)$.

• Note that all the edges that are T-light are actually in T. Because if an edge e = (u, v) is T-light and not in T, then we can always remove the edge with the highest weight in the unique path from u to v in T and add e. The resulting tree will be a spanning tree with less weight than T. This contradicts the assumption that T is a minimum spanning tree. T contains n - 1 edges. Therefore the number of edges in G that are T-heavy is m - n + 1.