Solutions for CS174 Homework 8

- The probability that a min cut of the original graph G with n vertices survives as a min cut of the contracted graph G^{\prime} with t vertices is $(t / n)^{2}$. Let $P(t)$ be the probability that a call to the algorithm with t vertices successfully computes the min cut (given that the min cut is still in the graph). So similar to the lecture notes, $P(t)=1-\left(1-\frac{1}{4} P\left(\frac{t}{2}\right)\right)^{2}=\frac{1}{2} P\left(\frac{t}{2}\right)-\frac{1}{16} P\left(\frac{t}{2}\right)^{2}$. The recurrence has two terms on the RHS, but as $P(m)$ decreases which it does as n increases, the second term is negibly small. The solution to the recurrence $P(t)=1 / 2 P(t / 2)$ is easily shown by induction to be $P(t)=\Theta\left(\frac{1}{n}\right)$.
- For a graph with $O(n)$ edges, the total work to contract all the edges is $O(n)$ using a suitable data structure (e.g. union-find). So from the divide-and-conqure algorithm, we have the formula $T(n)=2 T(n / \sqrt{2})+O(n)$. We know the following lemma holds:

Lemma 0.1. Suppose $T(n)$ satisfies the recurrence relation: $T(n)=a T(n / b)+\Theta\left(n^{\alpha}\right)$, if $n>1, T(n)=\Theta(1)$, if $n=1$. Let $\beta=\log _{b} a$. Then $T(n)=\Theta\left(n^{\beta}\right)$, if $\alpha<\beta$.

It's easy to see that the lemma holds by drawing a recursion tree. So $T(n)=O\left(n^{2}\right)$.

- Note that all the edges that are T-light are actually in T. Because if an edge $e=(u, v)$ is T-light and not in T , then we can always remove the edge with the highest weight in the unique path from u to v in T and add e. The resulting tree will be a spanning tree with less weight than T. This contradicts the assumption that T is a minimum spanning tree. T contains $n-1$ edges. Therefore the number of edges in G that are T-heavy is $m-n+1$.

