Solutions for CS174 HW9

- 1. \mathbb{Z}_N^* is a multiplicative group is cyclic iff n is either: 1, 2, 4, p^k , or $2p^k$ where p is an odd prime. $\phi(2) = 1$. If n = 4, $\phi(n) = 2$. If $n = p^k$, $\phi(n) = p^{k-1}(p-1)$, so set $p^{k-1}(p-1) = 2^m$, we get pneeds to have the form $2^m + 1$ and k = 1. If $n = 2p^k$, $\phi(n) = p^{k-1}(p-1)$ which is the same as for a prime power. So n needs to be either 1, 4, or $2^m + 1$ or $2(2^m + 1)$ for some m where $2^m + 1$ is an odd prime.
- 2. $\phi(\phi(5^k)) = \phi(5^{k-1}2^2) = 2 \times 5^{k-2} \times 4 = 5^{k-2} \times 8$. So the fraction of generators is 8/25.
- 3. Given $gcd(e_1, e_2) = 1$, we can find x_1 and x_2 using Euclid's algorithm such that $e_1x_1 + e_2x_2 = 1$. So $C_1^{x_1}C_2^{x_2} = M(\mod n)$.
- 4. $\phi(\phi(p)) = q 1$. So the fraction of generators is (q 1)/(2q + 1).