Solutions for CS174 HW9

1. \mathcal{Z}_{N}^{*} is a multiplicative group is cyclic iff n is either: $1,2,4, p^{k}$, or $2 p^{k}$ where p is an odd prime. $\phi(2)=1$. If $n=4, \phi(n)=2$. If $n=p^{k}, \phi(n)=p^{k-1}(p-1)$, so set $p^{k-1}(p-1)=2^{m}$, we get p needs to have the form $2^{m}+1$ and $k=1$. If $n=2 p^{k}, \phi(n)=p^{k-1}(p-1)$ which is the same as for a prime power. So n needs to be either 1,4 , or $2^{m}+1$ or $2\left(2^{m}+1\right)$ for some m where $2^{m}+1$ is an odd prime.
2. $\phi\left(\phi\left(5^{k}\right)\right)=\phi\left(5^{k-1} 2^{2}\right)=2 \times 5^{k-2} \times 4=5^{k-2} \times 8$. So the fraction of generators is $8 / 25$.
3. Given $\operatorname{gcd}\left(e_{1}, e_{2}\right)=1$, we can find x_{1} and x_{2} using Euclid's algorithm such that $e_{1} x_{1}+e_{2} x_{2}=$ 1. So $C_{1}^{x_{1}} C_{2}^{x_{2}}=M(\bmod n)$.
4. $\phi(\phi(p))=q-1$. So the fraction of generators is $(q-1) /(2 q+1)$.
