
CS174 Lecture 11

Routing in a Parallel Computer

We study the problem of moving packets around in a parallel computer. In this lecture we will
consider parallel computers with hypercube connection networks. The methods we describe are
easy to adapt to other connection networks, like butterflys or fat trees. An 8-processor machine is
shown below.

The processors are at the vertices of the cube, and edges represent communication links. Each
processor is numbered with a 3-bit binary number. Notice that the processor numbers are also X-
Y-Z coordinates of the 3D layout of the cube.

A hypercube is a higher-dimensional cube. You can create a hypercube in N+1 dimensions from
an N-dimensional by making an extra copy of the N-dimensional cube, and adding an extra bit
which is zero in one copy and one in the other. Then join corresponding vertices. E.g. a 4D
hypercube can be built from the 3D hypercube this way as shown below.

The processors are number with 4-bit binary numbers which represent the X-Y-Z-W coordinates

000

001

100

110

111011

010

101

X

Y
Z

0000

0010

1000

1100

1110
0110

0100

1010

0001

0011

1001

1101

1111
0111

0101

1011

X

Z Y

W

(aside, this is a valid projection of 4D space, and this is exactly what the 4D cube looks like.
Projecting from 4D or N-D into 2D is analogous to 3D projection).

Definitions

Processor number i is wants to send a packet vi to destination d(i). We assume that the computer
runs synchronously, so that all processors try to send their packets at the same time.

Permutation Routing

In permutation routing, every processor tries to send to a different destination. That is, the
function d(i) is a permutation.

Oblivious Routing

The route taken by a packet vi depends only on its destination d(i) and not on any other packet’s
destination d(j).

Oblivious routing is the most practical method to use for parallel computers. Routing which is
not oblivious requires central coordination. But that implies that some processor is able to look at
the destinations of many packets in the current time step and compute a good global routing for
them. This takes a considerable amount of time and communication. It is certainly not a good
idea to use it for routing packets, which is the lowest level operation that the parallel machine
performs. Routing must be very fast because all of the high level machine operations rely on it.
E.g. some machines even borrow main memory from other machines on the network. So they
must access that memory even faster than the simplest computations.

Collisions

A collision occurs when two packets arrive at the same processor at the same time and try to
leave via the same link.

Bit Fixing

Bit fixing is a simple process for routing a single packet obliviously. Take the bit address of the
source processor and change one bit at a time to the address of the destination processor. Each
time a bit is changed, the packet is forwarded to a neighboring processor.

This works because in a hypercube, each processor i is connected to all the processors j whose
bit addresses differ from i in one bit. E.g. processor 1011 is connected to processor 0011,
processor 1111, processor 1001 and processor 1010. So changing one bit of the address
corresponds to sending the packet from the current node to a neighboring node.

It should be clear that bit fixing is an optimal routing scheme for a single packet. If the source i
and destination address j differ by k bits, then the packet must traverse at least k links in the
hypercube to get to its destination. Bit fixing gets it there in exactly k steps.

If we have to route many packets though, even if the routing is a permutation routing, bit fixing
can cause collisions. In fact, so can any deterministic oblivious routing strategy. To deal with
collisions, every processor has a queue and a prioritizing scheme for each incoming packet. If

incoming packets try to leave along the same link, they are placed in a queue and sent off in
different time steps.

e.g. in the figure above, three packets arrive at the same node and attempt to leave along the
same link (we show their destinations as the same which doesn’t happen with permutation
routing, but what we really mean is that the next node address is the same). If the 3 packets
arrive at time step T, the packets are queued, and v1 leaves in time step T+1, v2 leaves at T+2,
and v3 leaves at T+3.

Thus routing can still occur with collisions, since all packets eventually get to their destinations,
but there may be long delays because of queueing. In fact we have:

Theorem

Any determistic oblivious permutation routing scheme for a parallel machine with N processors
each with n outward links requires Ω(√(N/n)) steps.

Luckily we can avoid this bad case by using a randomized routing scheme. In fact most
permutations cause very few collisions. So the idea is to first route all the packets using a
random permutation, and then from there to their final destination. That is,

Randomized Routing

1. Choose a random permutation σ of {1,…,N}. Route packet vi to destination σ(i) using bit
fixing.

2. Route packet vi from σ(i) to d(i) using bit fixing.

There is an important observation we can make about bit fixing. Namely, during a given phase of
the above algorithm (step 1. or step 2.) two packets can come together along a route and then
separate, but only once. That is, a pair of routes can look like the left picture but not the right:

v1

v2

v3

d(1)=3

d(2)=3

d(3)=3

v3 v2 v1

Possible Impossible

To see this, notice that during bit fixing routing, an intermediate address always looks like

D1,…,Dk,Sk+1,…,Sn

where Si is a bit of the Source address, and Dj is a bit of the destination address. If two routes
collide at the kth step, that means their destination addresses agree in their first k bits and the
source addresses agree in their last n-k bits. Let k0 be the first value of k for which the packets
collide. At each time step, we add one more bit of the destination address, which means we
increment k. Eventually, the destination bits must disagree (because the destinations are
different). Let k1 be the value of k at which this happens. Then the Dk1 destination bit is different
for the two packets. At that point, the two packets separate. They will never collide again,
because all the later intermediate destinations will include the Dk1 bit.

This observation is the crux of the proof of the following theorem:

Theorem

The delay of a packet vi is ≤ |S| where S is the set of packets whose routes intersect vi’s route.

We won’t give a detailed proof. It’s enough to notice that whenever the routes of two packets
intersect, one of the packets may be delayed by one time step. Once that packet is delayed by one
time step at the first shared node, it will flow along the shared route behind the other packet, and
will not be delayed any more by that packet.

If the same route intersects other routes, each of them may add a delay of one time step. This
happens either (i) because another packet collides with the current packet along a shared route, or
(ii) because another packet collides with a packet that is ahead of the current packet along a part
of the route which is shared by all three. In either case, an extra delay of at most one results.

To get the running time of this scheme, we compute the expected value of the size of the set S
above. Define an indicator random variable Hij which is 1 when the routes of packet vi and
packet vj share at least one edge, and Hij is 0 otherwise. Then by the above theorem, the expected
delay of packet vi is the expected size of S which is

It’s rather difficult to an exact estimate of this quantity because Hij is a complicated condition.
It’s easier to think about T(e) which is the number of routes that pass through a given edge e.
Now suppose the route of packet vi consists of the edges (e1, e2,…, ek). Then we have

And so









∑

=

N

j
ijHE

1

∑∑
==

≤
k

l
l

N

j
ij eTH

11

)(





≤








∑∑

==

k

l
l

N

j
ij eTEHE

11

)(

To use this bound we next compute E[T(e)] which turns out to be ½. To see that, notice that

 E[T(e)] = (sum of lengths of all routes)/(total edges in the network)

The sum of lengths of all routes is the expected length of a route times N (the number of all
routes). The average length of a route is n/2 because an n-bit source differs from a random
destination address is n/2 bits on average. So the sum of route lengths is Nn/2.

The total number of edges in the network is the number of nodes times the number of outbound
links, which is Nn. So

 E[T(e)] = (Nn/2)/(Nn) = ½

Then if the path for packet vi has k edges along it, then

Now we can apply Chernoff bounds to the probability of there being a substantial number of
paths intersecting vi’s path. The Chernoff bound is

Aside, this is the Chernoff bound for large δ > 2e-1.

We now compute the probability that vi is delayed at least 3n steps. So we require that (1+δ)µ =
3n. Notice that we dont actually know what µ is, but we have a bound for it of µ ≤ 0.5n. It
follows that µδ ≥ 2.5n. Thus the probability vi is delayed by at least 3n steps is bounded by 2-2.5n.

This is a bound for the probability that a given packet is delayed more than 3n steps. But we
would like to get a bound for the probability that no packet gets delayed more than 3n steps. For
that, it’s enough to use the sum rule for probabilities as a bound. There are N = 2n routes total,
and the probability that none of these takes more than 3n steps is bounded above by

 2n 2-2.5n = 2-1.5n

So we can make the following assertion:

With probability at least 1 – 2-1.5n every packet reaches its destination σ(i) in 4n or fewer steps.

The 4n comes from the delay time (3n) plus the time for the bit fixing steps, which is ≤ n. Notice
that all of this applies to just one phase of the algorithm (recall that phase one routes a packet to a
random location, and phase two routes from there to the actual destination). So the full algorithm
routes all packets to their destinations with high probability in 8n or fewer steps.

22
)(

11

nk
eTHE

k

l
l

N

j
ij ≤=≤








∑∑

==

[] µδµδ −≤+>∑ 2)1(Pr ijH

