CS174 Lecture 21 John Canny

Cryptography

The idea of cryptography is to protect data by transforming into a representation from which the
original is hard to recover. These days many networking technologies (internet, wireless) allow
many agents to see a piece of data as it moves from its source to its destination. Those agents can
capture the data in the representation sent across the network, and use it for their own purposes.
Increasingly, people send data of great value (e.g. credit card numbers, secrets) through networks,
so there is plenty of need for crytpography. In the future, most monetary transactions will probably
go across the standard internet, and cryptography is an essential part of doing those transactions
safely. There are two common types of cryptography:

Public-Key systemsIn a public-key system, the message M is encrypted using & kdyich is
public. That is, to encrypt the message compkite- E (M, e) whereE is the encryption
function. To decrypt the encrypted messageyou computeM = D(X,d), whered is
the decryption key corresponding 4o The point of public-key systems is that knowing the
encryption keye doesnt help a spy to discover the decryption ey

Private-Key systemsIn a private-key system, the message M is encrypted using a \#ych is
known only to the sender and receiver. Once again, to encrypt the message compute
E(M,e) whereE is the encryption function. To decrypf, you computeM = D(X,d),
whered is the decryption key correspondingdoln a private-key system, there is usually a
simple relationship between the encryption and decryption keys, so knewiagld make it
easy for a spy to intercept and decrypt a message. Probably the most widely used secret-key
system is DES (the Data Encryption Standard).

RSA: A public-key crypto-system

The most famous public-key system is called RSA after its inventors Ron Rivest, Adi Shamir, and
Len Adleman. Its very easy to describe RSA given what we know about additive and multiplicative

groups ofZ,,. First of all, we assume the message is broken into chunks of the right size, say 1024
bits. In what follows, assuma/ is at most 1024 bits.

1. Generate a numberof at least 1024 bits which is a product of two large primesdyg. i.e.
generate two primes of at least 512 bits and multiply them together.

2. Givenp andg, recall thatp(n) = (p — 1)(¢ — 1) so it is easy to computig(n).
3. For the encryption key, choose a value s.gcd(e, ¢(n)) = 1.

4. Using the extended Euclid algorithm, find the multiplicative inverse(afod ¢(n)), that
is, findz such thatx + ¢(n)y = 1. This inverse is the decryption kely

1



5. The public (encryption) key is the pdit, n), while the decription key, which only the re-
ceiver knows igd, n).

To send a message using RSA, the sender computes
X = M¢(mod n)

And then to decrypt the message, the receiver computes:
My = X%mod n) = M*(mod n)

Now sinceM ¢ (mod n) = 1 anded is 1 + some multiple of(n),
M¢(mod n) = M'(mod n) = M

So the recovered messagé, is indeed equal to the original messagle Notice that the
encryption and decryption functions are identical, that is:

E(X,(k,n)) = D(X,(k,n)) = X¥(mod n)

Complexity of RSA

We should check that we can do all the steps in RSA efficiently. Let’s defer choosing the primes
p andq for a moment. All the powering and gcd calculations are clearly in polynomial time in the
number of bits ofn. The other task is to find a numbeisuch thatgcd(e, ¢(n)) = 1. From last

time we know that the fraction of elements which are relatively prim&/ts 2(1/log N). So
settingNV = ¢(n), afterO(log V) random trials for, we should be able to get arwhich is prime

to ¢(n). This is still all polynomial in the number of bits af

For generating primes, we can generate random numbers in the appropriate range and test them
for primality. The prime number theorem asserts that abguit » of the numbers less thanare
prime. So about one imn of the integers neat is a prime. Thus if we maké&(logn) random
choices, we will have high probability that one of our choices is a prime. So it is enough to show
that there is an efficient test for primality. There are quite a few of these, but we will present one
which is self-contained given what we know so far:

Algorithm Primality
Input: Odd number n and t
Output: PRIME or COMPOSITE

1. If nis a perfect power, then return COMPOSITE
2. Chooséy, by, ..., b, independently and uniformly at random frdfy — {0}
3. Iffor anyb;, ged(b;, n) # 1 then return COMPOSITE

4. Computer; = bgn_l)/Q(mod n)fori=1,...,t

2



5. Ifforanyi,r; # £1(mod n), then return COMPOSITE

6. Ifforalli, r; = 1(mod n), then return COMPOSITE
else return PRIME

Theorem
The probability that algorithrPrimality makes an error i©(1/2%).

Proof
Clearly all the steps from 1 to 5 are correct. So we are left with checking step 6 in the two cases
when n is prime or composite.

Suppose: is prime. We can output COMPOSITE if all of thgs evaluate to 1. But we know
that for randomly choseh’s only half of them (those which are even powers of a generator) would
give +1 when raised to thg: — 1) /2. The probability that all thé;'s we chose happen to be even
powers of a generator would hg2!. Thus we output the wrong answer with probabilif2’.

If n is composite, the proof is more difficult and we wont give it here. But it can be shown that
in that case, the probability of a wrong answet ji&'~'. QED

Finally, we should say something about checking i a perfect power. We want to check if
n = (¥ for some integet andk. We can do that by trying each= 1,2, ...,log(n). For eachk,
we compute thé'" root ofn by Newton’s method or bisection, which are both polynomial time in
the number of bits ofi. Overal this takes time polynomial ing .

Security of RSA

We would like to be convinced that RSA is a secure cryptographic scheme. For it to be so, we need
a hypothesis:

Factoring is Hard It is believed to be very difficult to factor an integerin the worst case. The
worst case is where comprises a small number of large factors. This has not been shown to
be NP-complete, but the problem has resisted years of effort at finding efficient algorithms.

To see how factoring would help break RSA, notice that knowledge of the factordq of n
is all that was needed in the key generation procedure described above. That ig, @ingn you
can computes(n), and givenp(n) you can compute the decryption key from the encryption key
using the extended Euclid algorithm.

So if factoring is easy, RSA is easy to break. But its possible that RSA is easy even if factoring
is hard, because its not known how to go in the other direction - how to reduce factoring to breaking
RSA.



