
CS174 Lecture 25 John Canny

Secret Sharing and Threshold Decryption

The goal of secret-sharing is to divide a secretS into n piecesS1, . . . , Sn such that anym + 1
pieces are sufficient to reconstructS, but anym pieces give no information aboutS.

Secret-sharing has applications in online voting, digital cash and threshold decryption, which
we will see later in this lecture. There are more direct applications: You may have some sensitive
data in files at work that you encrypt using a one-time private key, e.g. about student grades. It
may be important for other people at work to access this information in the case where you are
unavailable (or worse, if you are available but have lost the key!). In this case, you could share the
key S into e.g. n = 5 shares, and give them to a five people at work. If any (e.g.)m + 1 = 3
of the people decide to use their keys to access your data, they can do so even if you are not
there. Sharing is useful in this case because if you gave the key to these people directly, any one
of them could wrongfully use their keys to access your data. It may be very hard to detect this.
Using secret-sharing makes dishonesty less likely and it also makes it hard for one person to cheat
without being discovered. Ifm + 1 = 3, any person that wants to cheat needs two accomplices,
and all three could be witnesses against the others.

Lets consider a very simple secret sharing scheme withn = m + 1. Let S be the secret to be
shared. AssumeS < p for some primep. Choosen − 1 random valuesS1, . . . , Sn−1 uniformly
from Zp. Then set

Sn = S −
n−1∑
i=1

Si(mod p)

from which it follows that

S =
n∑

i=1

Si(mod p)

So we can recoverS if we have alln shares by simple addition. What about if we haven − 1
shares? Clearly if we haveS1, . . . , Sn−1 they give us no information aboutS.

Now suppose we haven − 1 values includingSn (which means all but one ofS1, . . . , Sn−1).
The firstn − 2 of these values (which are randomly chosen) are independent. The last valueSn

depends on these values, but also on the missingSi. Each distinct value ofSi produces a distinct
value ofSn. ThereforeSn has the uniform distribution, and is independent of the firstn − 2 Si’s.
So thesen − 1 numbers appear to us as independent random numbers, and give no information
aboutS.

Shamir Secret Sharing

More generally, we would like to split a secretS into n pieces so thatm + 1 ≤ n pieces are
sufficient to reconstruct it. Usingm < n makes the sharing tolerant of loss of a part of the key, or

1



non-cooperation by someone who has a share. It is still safe because we can setm to be large, e.g.
n/2, so that more than half of the people with shares would have to collude to improperly decode
the secret.

AssumeS < p for some primep > n. Now choosem ≤ n valuesa1, . . . , am independently
and uniformly at random fromZ∗

p. Finally seta0 = S, the secret. The coefficientsai define a
polynomial:

a(x) = amxm + amxm−1 + · · ·+ a1x + a0

Now choosen distinct valuesr1, . . . , rn at random fromZ∗
p. You can do this by choosing indepen-

dently and uniformly, but discarding repeats. You must havep > n to get enough values. Then
set:

Si = (ri, p(ri)) for i = 1, . . . , n

to get then shares. The shares consist of the values of the polynomial at specified values of
x = r1, . . . , rn. Polynomials have the following property:

Interpolation property Givenm + 1 pairs(xi, yi) with xi’s all distinct, there is a unique polyno-
mial a(x) of degreem passing through all the points. This polynomial can be effectively computed
from the pairs(xi, yi):

a(x) =
m+1∑
i=1

yiLi(x)

whereLi(x) is the Lagrange polynomial:

Li(x) =

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

which has value1 at xi and zero at every otherxj. This method is called Lagrange interpolation
and is very efficient.

The Lagrange interpolation formula involves only addition, multiplication, and division by
non-zero values assuming thexi are distinct. Therefore since the values(xi, yi) all lie in Zp, the
coefficients ofa(x) are also elements ofZp. It follows from the interpolation property that:

Lemma: Any m + 1 shares suffice to determine the secretThe interpolation property implies
that we can uniquely reconstructa(x) from anym + 1 pairs (xi, yi). Once we havea(x), we
certainly knowa0 = S. In fact since we need only the constant term ofa(x), the Lagrange formula
gives us

a0 = a(0) =
m+1∑
i=1

yiLi(0)

Lemma: Any m shares give no information about the secretIf we havem pairs(xi, yi), we can
add one more which is(0, v) for any v ∈ Zp. Then we would havem + 1 points which would
uniquely define a polynomiala(x). But notice thata0 = v. Thus, we can choose any value for
the secretS and still be consistent with them values we are given. Not only that, but every such
choice is equally likely (becausem + 1 values define a unique polynomial with a unique choice
for the random coefficients). Thereforem values give us no information about the secretS.

2



Threshold Decryption

As you might imagine, sharing keys like this can be a complicated and time-consuming process.
There is the process of creating the shares, then making sure they do to the right people etc..
Once enough people decide to combine their shares, the secret will be reconstructed and isnt secret
anymore. What if the secret being shared were a secret keyd for a public-key crypto-system?
Intuitively, you might expect the holders of the share to be able to decrypt messages collaboratively.
Can this be done, and how difficult is it to do?

The answer is yes, for both RSA and El-Gamal encryption. And the method is surprisingly
simple: users simple decode the message in the usual way using their piece of the shared decryption
key. Then the partial decryptions from anym + 1 users can be combined to recover the original
message. Lagrange interpolation is used in an interesting way.

Suppose(N, d) is a secret RSA key and(N, e) is the corresponding public key. Assume thatd
has been shared using Shamir secret-sharing inton sharesd1, . . . , dn such that anym + 1 suffice
to reconstructd. The shares are distributed ton people.

Let M = T e(mod N) be the encryption of a messageT using RSA. We sendM to all the
people, and ask them to decrypt it using their share ofd. If at leastm + 1 people cooperate, we
obtainm + 1 values:

vi = Mdi(mod N)

Going back to the Lagrange formula, recall that the secret is a linear combination of the polyno-
mial’s values:

d = a0 = a(0) =
m+1∑
i=1

yiLi(0)

which suggests that we apply these weights as exponents:∏
i

v
Li(0)
i =

∏
i

MdiLi(0) = M
∑

i diLi(0) = Md (mod N) = T

So we can recover the messageT from M as long as at leastm+1 share-holders participate. They
do not expose their keys by participating, so we can repeat this process as often as we want. (Note
that the valuesLi(0) depend on the particular set ofxi’s which we get back).

A very similar idea works for El-Gamal encryption. LetS be a secret key which is shared
amongn people asS1, . . . , Sn. The corresponding public key is(p, g, h = gS(modp)). A message
T would be encrypted as(gr, Thr)(mod p). How should each share-holder “decrypt” the message,
and how would you combine those partial decryptions?

3


