
CS174 Lecture 26 John Canny

Electronic Voting

Mechanical voting schemes have been receiving a lot of press lately, none of it good. But for now
people are also wary of electronic schemes because of their perception of computer systems as
playgrounds for hackers - computers might be more accurate but they are also more susceptible to
tampering. At least you need to be handy with a screwdriver to mess with a machine. It sometimes
feels like any kid with a computer can mess with government information systems.

Its important to understand how we can protect voter information in electronic schemes. Elec-
tronic voting is also interesting because it is an example of amulti-party protocol. Rather than
simply hiding or revealing data, we can put the data to work without revealing it.

We have several goals in digital voting schemes. First of all, we want them to be accurate:
the final count should be the true count of voters’ votes. The surest way to do this is to make the
outcome verifiable. Anyone can check the total and verify that its correct. But we also want to
protect voters’ privacy, especially if many parties are allowed to verify the total. So ideally we
want a method for checking the total of some votes without disclosing individual votes. Finally,
keeping voters’ votes private may allow them to cheat: the methods we use are numerical, and if
a voter can vote zero or one, they may be able to cheat by sending in huge numbers as their vote.
So we would like user votes to be verifiable. There are several voting schemes that satisfy these
criteria. Here is a practical one.

Homomorphism

The first idea we need is homomorphism: a homomorphism is a functionh together with group
operations defined on its domain and range which are compatible with the function, that is:

h(a⊕ b) = h(a)⊗ h(b)

The operations⊕ and⊗ are generally different because the groups in the domain and range ofh
are different. Suppose for instance thath(x) = gx(mod p) for some primep. Thenh(a + b) =
h(a) ∗ h(b), so that⊕ = + and⊗ = ×. We will need this homomorphism later.

Secret sharing is another homomorphism. Let the shares of a secreta bea1, . . . , an such that
t + 1 of them are enough to reconstructa. Recall that we can compute the secret from the shares
using a linear combination, that is

a =
t+1∑
i=1

aiLi(0)

The coefficientLi(0) depends on which secret shares we are using, but not on the shares them-

1



selves. So if we have another secretb that is split into sharesb1, . . . , bn, its reconstruction is

b =
t+1∑
i=1

biLi(0)

It follows easily that if we defineh(s1, . . . , st+1) =
∑

siLi(0), thenh is a homomorphism:

h(a1 + b1, . . . , at+1 + bt+1) = h(a) + h(b)

In this case,⊕ is vector addition, and⊗ is addition of scalars.

Question: Why couldnt we define the homomorphism the other way:h(a) → (a1, . . . , an)?

Distributing Votes

Using the secret-sharing homomorphism, we can develop a voting scheme that is verifiable and
hides individual votes quite easily. Suppose there areN voters andn “voting centers” that collect
votes. We assume that these centers are independent of each other, and reasonably trustworthy
(some might be operated by major political parties).

Let vi be personi’s vote, and lets say that its required to be0 or +1. Personi splits their vote
into n pieces using secret sharing:

vi → (vi1, . . . , vin)

and they send thejth piece to voting centerj. To avoid a spy on the network seeing all the shares,
we assume that each center has a public encryption keyEi and that every message to a center is
encrypted with this key. After every person has voted, then centers each have a share of every
vote.

Aside: There is a non-trivial distributed computing problem here. The voters need to send their
votes to the centers independently or they lose privacy. Its very likely that some votes will not make
it to all the centers. But the centers must use exactly the same set of votes for the reconstruction step
to work. Agreeing on which votes to use is a byzantine agreement problem. If we only used votes
received by all centers, it would be very easy for one dishonest center to discard votes. Fortunately,
if t + 1 or more centers receive a vote, its possible to reconstruct the other shares without exposing
the vote. So the centers can agree to count all votes witht + 1 or more pieces, and that prevents
small coalitions of centers from cheating.

now each center computes the total of all of its votes, and

Tj =
N∑

i=1

vij

is the total computed by centerj. The homomorphism property implies that

T =
t+1∑
j=1

TjLj(0)

2



is the correct total of the votes. We can compute such a total for various subsets oft + 1 centers.
All the totals should agree. If one center cheats, we will get different totals. It will be obvious that
there is a problem, and it will not be difficult to find the offending center. Assuming they all agree,
we have a reliable totalT of all the votes.

The weakness with this scheme is that the arithmetic calculations are donemod p for some
large prime (required for secret sharing), and any number inZp could be used as a vote. Any voter
could give106 votes for one candidate. Because their vote is hidden by secret sharing, no center
could detect this fraud.

Verifiable Votes

The solution is to require each voter to make a certain bit commitment to their vote, which they
make public. The commitment keeps the vote secret, but allows the centers and other parties to
verify that the voter has voted honestly.

Supposep is of the formkq+1 for some large primeq. Letg andh be elements of the subgroup
of Zp of orderq. To commit to a votev, we choose a randomr in {1, . . . , q} and define

Br(v) = grhv(mod p)

Assuming that the discrete log problem is hard, a person that knowsBr(v) andg andh, cannot
determiner or v. Notice that this bit commitment scheme is also a homomorphism:

Br1+r2(v1 + v2) = Br1(v1)Br2(v2)

We needr to hide the vote becausev is supposed to be a very small number. It is not hard to
compute a discrete log when the log is zero or one.

This time, each voter uses secret sharing to splitboththeir votevi and the secret numberri into
n pieces. They send thejth shares of both pieces to centerj. Centerj computes its tallyTj as
before, but also computes a tally ofr values:

Rj =
N∑

i=1

rij

TheseRj ’s can be combined like theTj ’s to reconstructR which is the total of all the user’sri

values. Then because of the homomorphism ofB(), we can check the total:

N∏
i=1

Bri
(vi) = gRhT

3


