
CS174 Lecture 27 John Canny

Electronic Voting

We finish our discussion of electronic voting with a scheme to verify that each voter is voting
honestly. Since the protocol we described last time allows votes to be cast secretly, a voter can
exceed the specfied range of values (usually{0, 1}) without fear of discovery. The last piece of the
protocol is a scheme that establishes each voters honesty:

ZKP of Voter Honesty

Recall that each voter has a votev, and a random secretr that hides their vote in a commitment:

Br(v) = grhv(mod p)

. The goal of this ZKP is to prove that inBr(v), v is either zero or one. This proof is a particular
example of a general style of ZK proof that one ofk claims is true. We actually construct ZKP
proofs thatv = 0 andv = 1, but we cheat on one proof. The verification step is arranged so that
the verifier is convinced we have only cheated once.

Both proofs are three-step interactive proofs with a random challenge from the verifier. Here’s
a proof that the vote is zero. We assume thatp, q, g andh are known to everyone:

1. Prover (voter) chooses randomu ∈ Zq and sendsα = gu(mod p) to verifier.

2. Verifier sends a random challengec to prover.

3. Prover sends backw = rc + u(mod q) to verifier.

4. Verifier checks thatgw = α(Br(v))c(mod p)

This is actually the zero-knowledge proof of discrete log we gave earlier. The prover is proving
knowledge of the discrete log ofgr without revealingr, since whenv is zero,Br(v) is justgr. To
adapt this prove to prove thatv = 1, we need only change the last step so that we are again proving
knowledge of the discrete log ofgr:

3. Verifier checks thatgw = α(Br(v)h−1)c(mod p)

Because this is a zero-knowledge proof, we know that the series of messages could be simulated
by a third party. Here is a simulation of the proof thatv = 0:

1. Choosew, c at random first

2. Computeα = gw(Br(v))−c(mod p).

1



These values clearly satisfy the verifier’s check in step 3. But we dont need to knowr to create
this simulation. Obviously it gives us no information aboutr. This simulation can work forv = 1
by changingα = gw(Br(v)h−1)−c(mod p).

The difference between the real proof and the simulation is that the challenge from the verifier
in the real proof comes after the prover has sentα. If we run both protocols (forv = 0 andv = 1)
in parallel, the prover could not cheat. But if we run both in parallel and the verifier issues asingle
challengeat step 2., which must be the sum of the two challenges, then the prover can cheat at
most once.

So to make a proof thatv = 0 or v = 1, we either combine a true proof thatv = 0 with a
simulation thatv = 1, or we combine a true proof thatv = 1 with a simulation thatv = 0. The
verifier can’t tell which is true. They know that one or the other must be true, because the proof
shows that we didnt cheat twice. But they can’t tell which. Here is the protocol for the case that
v = 0 (in real life):

1. Prover (voter) chooses randomu0 ∈ Zq and sendsα0 = gu0(mod p) to verifier. Prover runs
simulation forv = 1, and chooses randomw1, c1 and sendsα1 = gw1(Br(v)h−1)−c1(mod p)
to verifier.

2. Verifier sends a random challengec to prover.

3. Prover computesc0 = c−c1. For proof thatv = 0, prover sends backw0 = rc0+u0(mod q)
andc0 to verifier. For proof (simulation) thatv = 1, prover sendsw1 andc1 to verifier.

4. Verifier checks thatc = c0 + c1 and that

gw0 = α0(Br(v))c0(mod p)

gw1 = α1(Br(v)h−1)c1(mod p)

The verifier knows that prover couldnt have chosen bothc0 andc1 in advance, and therefore
must have computed one of them after step 1. Thus one of the proofs must be valid. Ifv = 1, the
prover use a real proof thatv = 1 and a simulation thatv = 0, which looks like this:

1. Prover (voter) chooses randomu1 ∈ Zq and sendsα1 = gu1(mod p) to verifier. Prover runs
simulation forv = 0, and chooses randomw0, c0 and sendsα0 = gw0(Br(v))−c0(mod p) to
verifier.

2. Verifier sends a random challengec to prover.

3. Prover computesc1 = c−c0. For proof thatv = 1, prover sends backw1 = rc1+u1(mod q)
andc1 to verifier. For proof (simulation) thatv = 0, prover sendsw0 andc0 to verifier.

4. Verifier checks thatc = c0 + c1 and that

gw0 = α0(Br(v))c0(mod p)

gw1 = α1(Br(v)h−1)c1(mod p)

2



Question: How could we make this protocol non-interactive?

Now whenever a voter votes, one or more centers challenge them to show that their vote is
really zero or one using this protocol. The checksum of commitments verifies that all the voters
secret shares match their bit commitments. With a little more work, we can design protocols such
that voters are required to prove that each individual share of their vote matches the commitment.
Thus each center can check that an individual’s vote is valid as soon as they receive it.

The protocol is reasonably efficient. It requiresO(nN) messages, and at mostO(N2) work
per voter to do the secret sharing. It still has some weaknesses, mainly the need to synchronize
all the centers lists of votes to be tallied. But it shows that some very robust e-voting schemes are
possible.

3


