CS174 Lecture Note 4

Based on notes by Alistair Sinclair, September 1998; based on earlier notes by Manuel Blum/Douglas
Young.

More on random permutations
We might ask more detailed questions, such as:

Q3: What is the probability that contains at least one 1-cycle (cycle of length 1)?
Q4: What is the distribution of the number of 1-cycles?

Before we can answer these questions, we need to recall the inclusion exclusion principle. The
version we use is adapted to probabilities. Suppose we starbvpitbperties (eventsyy, ..., E,.

First definep, = Pr[E;] andp;; = Pr[E; A E;] andp;;, = Pr[E; A E; A E}] and so on. (The indices

1, j, k here are assumed to be distinct.) Now we define stinas

n
S = Zpi Sy = Z Dij Sy = Z Dijk*
i=1 1<i<j<n 1<i<j<k<n

The following theorem, known as the Principle of Inclusion/ExclusexpresseBr[E; V...V E,]
in terms of the easier-to-compusg.

TheoremlPr[E1VE2VVEH]251—52+5'3—S4—0—:i:Sn

Proof: Let s be any sample pointif; V...V E,. How often is it counted on the right-hand-side?
Supposes occurs in exactly of the £;. Then it appears times inS, (;) times inSs, (g) times
in S3, and so on. (Why?) So the contributioniof|s] to the r.h.s. is

Prls]{(1) = (2) + (5) == ()} (%)

But now if we look at the binomial expansion @f — z)” we see

0=1-1 =1-()+()-()+=().

so the term in braces ifkx) is exactly 1. Thuss contributes exacthPr[s] to the r.h.s., which
proves the theorem. O

Now we return to Q3. LeE; be the event that mapsi to itself. Q3 asks foPr[E1V Ey V...V E,].
This seems hard to compute.

What probabilitiecanwe compute easily? We have

n(n—1)
n n—k)! n! n—=k)!
Sk = (k;) { n!) - k:!(nlk)! . n!) - % (*)
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We can now answer our Q3 about random permutations. From Theorem 1, and using the values
Sy = 4 from (x), we get:

Pr[r contains atleastone 1-cy¢le 1 — & + 5 — i+ 5 ~1—e ' =0.632...

Ex: How good is this last approximation far= 6? O
Now let’s think about Q4. For a family of even{#’; }, define
qr = Pr[exactlyk of the E; occut.

To compute this, we first need a generalization of Theorem 1.:

Theorem 1" Pr[at least: of the E; occuf = S, — (kfl) Spi1 + (Zﬂ) Spyo — (Zf?) Skig+ -+
(Zj) S, O

Ex: verify that Theorem 1 is a special case of Theorem 1’, and (harder!) prove Theorem &'

From Theorem 1’, we can easily deduce:
Theorem 2 ¢, = S}, — (’“Zl) Spi1 + ('“22) Shio — (’“23) Sppg 4o+ (Z) S,
Proof: From the definition ofy,, we have

qr = Pr[at leastt of the E; occuff — Pr[at least: + 1 of the E; occut.

From Theorem 1’, the coefficient 6f, . ; in the difference of these two series (neglecting the sign)
is

(5 + () = bl + i = e (1),

Since the signs alternate, this gives us exactly the series claimed.

L so Theorem 2

Going back to the special case of random permutations, recall(fpthat Sy, = ,

gives us:
Go=1-145—3+ -+
q=1-145 -5+ F
e=g{l-1+5— 5+ 525
s=5{1-1+4- 4+ F 1)
oz = g {1 -1+ 4
1= Gl — 1} =0
Gn = -
Ex: Give simple arguments to explain why ; = 0 andg, = % i

Thus we see that, for every fixedy, ~ e



The probabilities{%efl} play a special role: they define ti®isson distributionwith parame-
ter 1).

Definition: Ar.v. X has the Poisson distribution with parametaf

PrX =k] = e‘)"l\c,

(andPr[X = z] = 0 for all other values of). m

for all integersk > 0

Ex: Check that thigs always a probability distribution, i.e., th% e*“k—'f =1. O
k=0 )

So we see that, as — oo, the distribution of the number of 1-cycles in a random permutation on
n elements behaves like the Poisson distribution with 1.

Ex: Forn = 10, compute they, exactly and compare them with the approximate valgesl.
How good is the approximation? o

Mean and Variance for a Poisson R.VFor a Poisson R.\X, the expected value is
(o) —A)\k 00 —A)\k—l

(&
k P
-z 2y Py
and substituting = £ — 1 gives
00 —/\)\l
E(X) =AY S0 = deed =)

= !

So a random Poisson variahlé always has EX) = A. The variance of a random variable is
defined as
Var(X) = E((X - E(X))?)

and its not hard to show that this simplifies to Var) = E (X?) — E (X)*. We know that EX) =
A, so lets compute EX?):

o0 7)\)\k o0 efk)\k [e9) e—A/\k
RN = S (k—1) 3O
( ) Z k! Z (k=1 1;1 (k—1)! ,;(k:—l)!
After cancelling and substituting= k£ — 2, j = k — 1, the last two sums become
) —/\)\i 00 —)\)\j
E(X?) =) = A T =
i=0 : Jj=0

and finally
Var(X) = E(X?) —E(X)* = (A +\%) = (A)? =\
so we have the surprising result that the maadvariance for a Poisson distributionis
E(X)=Var(X) =\

The Poisson distribution shows up naturally in many contexts. Here is another example, which
also introduces another important distribution, lir@omial distribution

Bernoulli trials
A coin comes up heads with probabiljpy tails with probabilityl — p.

3



e Suppose it is tossedtimes. What iPr[exactlyk head$?

This question arises very frequently in applications in Computer Science. In place of coin flips,
we can think of a sequence ofidentical independent trials, each of which succeeds (heads) with
probability p. It is also a special case of Theorem 2 above, wheres the event “theth toss

is heads”: the difference here is ttibe eventd; are now independenso things are now much
simpler.

Define the r.v.X = # heads in above experiment.

Ex: By writing X = Y, X, for suitable indicator r.v.'s;, show that EX) = np and Var(X) =

np(l —p). m

What does the distribution of look like? Well, consider any outcome of the experiment in which
X = k,i.e., inwhich there are exacthyheads. We can view this as a string {H, T}" containing

k H's andn—k T’s. Now since all coin tosses are independent, we must Rejge = p*(1—p)"*.

The number of such stringsis (Z) Summing over sample points in the event = k” gives

Pr(X = K = (})p"(1 —p)"".
Definition: The above distribution is known as the binomial distribution with parametersdp.

Examples

1. The probability of exactly: heads im tosses of a fair coin iéZ)Z‘".

2. When we tossn balls inton bins, the probability that any given bin (say, hincontains
exactlyk balls is () ()F(1 — Lym*,

We’ll have a lot more to say about the binomial distribution later. Here, we just consider a special

case in whictp = A/n for some constank. Note that this means that(&') = np = A remains
constant as — oo.

Writing ¢, = Pr[X = k|, we have
@o=01-p"=01-2)"~e? asn — oo.
Also,

k —k
g _ _ (Jrta-»" _n—k+l . _p _ n—ktl  _)\

k-1 (kﬁl)pk—l(l_p)n—kﬂ— k 1-p — &k n—\"

For any fixedk, we therefore have’— ~ % asn — oco. So we get

@~ Aqo ~ e

A

A 2 =
g2 ~ 541 ~ €

A AP =
Qk ~ L49k—1 ~ 7€ -

Once again, we get the Poisson distribution, this time with parametenp.
Example: Suppose we toss = c¢n balls inton bins, where: is a constant. Then for any fixéd

Pr[bin i contains exactly: ballg ~ %e‘c. 0



