
CS174 Lecture 6 John Canny

Tail Bounds

Last time we looked at occupancy problems and derived some results on the distribution of some
random variables. We derived bounds on the probability of a bin containing more than k balls, and
the expected number of bins containing exactly k balls for various k. We had to do specific analysis
for balls and bins. This lecture gives two bounds that work for any probability distribution. One
(Markov) requires almost no knowledge about the distribution but gives very weak bounds. The
other (Chebyshev) needs knowledge of standard deviation but gives good bounds.

The bounds we study are called tail bounds because they correspond to the area or total probability
of tails under a probability distribution like the one above.

Markov Bounds

Let Y be a non-negative random variable, and t a positive number. The Markov bound is

Pr[Y ≥ t] ≤ E[Y]

t

The bound doesn’t depend on any knowledge of the distribution of Y , except that its non-negative.
The proof is easy once the bound is rewritten as:

tPr[Y ≥ t] ≤ E[Y]

That inequality comes from the definition of E[Y]. E[Y] is the sum of all possible values of Y
times the probability of each value, which we can write as

E[Y] =
∑
v<t

vPr[Y = v] +
∑
v≥t

vPr[Y = v]

1

The first term is non-negative because Y is, so we can remove it and make the inequality:

E[Y] ≥
∑
v≥t

vPr[Y = v] ≥
∑
v≥t

tPr[Y = v]

And then the last term rewrites as

E[Y] ≥ t
∑
v≥t

Pr[Y = v] = tPr[Y ≥ t]

Which is the inequality we wanted to prove.

Examples

The Markov bound is usually not very exciting. Consider placing n balls into n bins as per last
lecture. Then the number of balls in any bin is a non-negative random variable, whose expected
value is 1. Let Y be the number of balls in bin 1. E[Y] = 1, so by Markov

Pr[Y ≥ k] ≤ 1

k

Or if k = 10, the probability of more than k balls is less than 0.1. But we know from last lecture
that that probability is much smaller (about 10−6). So the Markov is not a tight bound. That’s not
surprising, because it assumes nothing about the distribution of Y , and this distribution like many
others, has small tails.

Chebyshev Bounds

Chebyshev bounds give us a lot more because they use more information about the distribution.
Specifically, they use information about the standard deviation of the random variable. Remember
that for a random variable X , the variance Var[X] is defined as

Var[X] = E[(X − X)2]

Where the expected value of X is
X = E[X]

And the standard deviation σX is defined as the square root of the variance. Then the Chebyshev
bound for a random variable X with standard deviation σX is:

Pr[|X − X| ≥ tσX] ≤ 1

t2
or equivalently Pr[|X − X| ≥ s] ≤ Var[X]

s2

2

Proof
The proof is by defining

Y = (X − X)2

And then applying the Markov bound to Y . First notice that

Pr[Y ≥ s2] = Pr[(X − X)2 ≥ s2] = Pr[|X − X| ≥ s]

Now apply Markov to this probability:

Pr[|X − X| ≥ s] = Pr[Y ≥ s2] ≤ E[Y]

s2
=

Var[X]

s2

since E(Y) is the variance Var[X].

Variance of a Bernoulli trial

Let Y be an indicator random variable for a Bernoulli trial, where

Y =

{
1 if the trial succeeds
0 if it fails

Let p = Pr[Y = 1]. Then the expected value E[Y] = p. The variance is

E[(Y − Y)2] = p2Pr[Y = 0] + (1 − p)2Pr[Y = 1] = p2(1 − p) + (1 − p)2p

Or
Var[Y] = p(1 − p)

Variance of a Sum of Independent Random variables

Now suppose Yi for i = 1, . . . , n are independent random variables, and Y =
∑

Yi. Then

Var[Y] =
n∑

i=1

Var[Yi]

You can check this yourself. Prove it for two random variables, and then extend to n using induc-
tion.

Example

In order to apply the Chebyshev bound to the occupancy problem, we need to compute the variance
of Y , the number of balls in bin 1. Let

Yj =

{
1 if ball j goes into bin 1
0 otherwise

3

Then because the Yj’s are independent their variances add:

Var[Y] =
n∑

i=1

Var[Yi] = nVar[Yi]

because the bins are indistinguishable and all the Yj have the same variance.

Now since Yj is an indicator, E[Yj] = Pr[Yj = 1] = 1/n. It represents a Bernoulli trial with
success probability p = 1/n, and from the earlier result on Bernoulli r.v.’s, its variance is:

Var[Yj] = p(1 − p) = (n − 1)/n2

And therefore
Var[Y] = nVar[Yj] = (n − 1)/n

Which is very close to 1. If Y ≥ k, then |Y − E[Y]| ≥ k − 1|, and by Chebyshev:

Pr[Y ≥ k] ≤ Pr[|Y − E[Y]| ≥ k − 1] ≤ Var[Y]

(k − 1)2
≈ 1

(k − 1)2

So Chebyshev gives us a bound that falls off as the inverse of the square of k. For k = 10, the
bound is 1/81, or about 0.012

Application: Randomized Selection

Selection is the problem of finding an element of rank k from some set. The rank rS(x) of an
element x in a set S is k if there are k − 1 elements in S that are smaller than x. The problem is
only interesting if S is represented as an unsorted array. If the array is sorted, it is of course trivial
to find the element of rank k. You might have seen a (complex) linear-time selection algorithm
in CS170. We present a simpler randomized algorithm here. The idea is to randomly pick a
“smallish” subset of elements from the set, and to sort them. Then you find a pair of elements a
and b from the sorted subset such that [a, b] should contain the element you’re looking for. You
compare all the elements with [a, b] and create a new subset P of elements in that interval. By
knowing how many elements are less than a, you figure out x’s rank m in P . Then sort P and pick
the element in the mth position.

4

Algorithm Lazyselect (from Motwani and Raghavan)

Input: An (unsorted) array S of n elements, and an integer k in the range 1, . . . , n.

Output: The kth smallest element of S.

1. Pick n3/4 elements of S, chosen independently and uniformly at random with replacement, and
place them in an array R.

2. Sort R in O(n3/4 log n) steps using any optimal sorting algorithm.

3. Let x = kn−1/4 . (This is a guess at the rank of the nearest element in R to the element we
want from S). Now define:

l = max(�x −
√

(n)�, 1) and h = min(�x +
√

(n)	, n3/4)

And let a = R[l], b = R[h]. Compare a and b with all the elements of S (linear time) to determine
the ranks rS(a) and rS(b). While doing this, put elements of S that are in the interval [a, b] into an
array P .

4. Check if rS(a) ≤ k ≤ rS(b). This is equivalent to checking if the kth smallest element of S is
in P . Check also if |P | ≤ 4n3/4 + 2. If either test fails, repeat steps 1-3 until success.

5. Sort P in O(n3/4 log n) steps, return P [k − rS(a) + 1] which is the kth smallest element of S.

Theorem: With probability 1 − O(n−1/4) Algorithm LazySelect succeeds on the first iteration. It
performs at most 2n + o(n) comparisons.

Proof: The test for success is at step 4. If k < rS(a) or k > rS(b) or if P is too big, we have to
iterate. Consider k > rS(b) first. Let Xi be a random variable which is

Xi =

{
1 if the ith random sample for R has rank ≤ k in S
0 otherwise

So Pr[Xi = 1] = k/n and Pr[Xi = 0] = 1 − k/n. Define

X =
n3/4∑
i=1

Xi

then X is the total number of elements of R that have rank ≤ k in S, and

X = n3/4E[Xi] =
k

n
n3/4 = kn−1/4

Which is also the value of x from the algorithm. Since X is a sum of indicator variables for
independent Bernoulli trials Xi where each trial has success probability p = k/n, its variance is
given by:

Var[X] = n3/4p(1 − p) = n3/4 k

n

(
1 − k

n

)
≤ n3/4/4

5

The 1/4 in the last bound follows because the maximum value of p(1 − p) for p ∈ [0, 1] is 1/4
(Calculus).

Now if k > rS(b), then ≥ h elements of R (the number which are ≤ b in R) where chosen
from S which had rank ≤ k in S. In other words, X ≥ h. Now since h = x +

√
n, we have that

Pr[X ≥ h] = Pr[X − x ≥ √
n]. Since x is the expected value of X , this is in a form that we can

apply Chebyshev to:

Pr[|X − x| ≥ √
n] ≤ Var[X]

n
=

n3/4

4n
=

1

4
n−1/4

which is the bound we wanted. Applying a very similar argument to k < rS(a) shows that Pr[k ≤
rS(a)] = O(n−1/4). Adding up both these probabilities of failure gives us O(n−1/4).

The last test is whether |P | > 4n3/4 + 2. Notice that |P | = rS(b) − rS(a) + 1, and for the test
to fail we must have either rS(b) − k > 2n3/4 + 1 or k − rS(a) > 2n3/4 + 1. The proof follows as
above, but start by defining Xi as a random variable which is 1 if the ith random sample for R has
rank > k + 2n3/4 , or rank < k − 2n3/4 respectively, in S. The failure probability is once again
O(n−1/4), so the total failure probability is O(n−1/4), which completes the proof.

6

