This Homework is due in class on Friday October 9th. It will be graded. Make sure you include your name and section number on your answer sheet.

1. Consider a triangle in the plane defined by points a, b, c. Fix a and b, and suppose that the lengths l_{1} of $a c$ and l_{2} for $b c$ are varied. Derive the forward kinematic equations that express the position of $c=\left(c_{x}, c_{y}\right)$ as functions of l_{1} and l_{2}. This kind of manipulator is different from most. Its called a parallel manipulator. Its forward kinematics are hard, but inverse kinematics is easy (deriving l_{1} and l_{2} from c is trivial).
2. The Inertia matrix I for a block with dimensions $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ is

$$
I=\frac{M}{12}\left(\begin{array}{ccc}
Y^{2}+Z^{2} & 0 & 0 \\
0 & X^{2}+Z^{2} & 0 \\
0 & 0 & X^{2}+Y^{2}
\end{array}\right)
$$

where M is the mass of the block. Suppose the block is rotated 90° about the x-axis. What is the new matrix? Check your answer using the formula $I=R I_{0} R^{T}$.
3. Recall that the Euler equation for rotation of a rigid body is

$$
T=I \alpha+\omega \times I \omega
$$

Assume that I is a diagonal matrix (as in the last example), with distinct values along the diagonal. Assume $T=0$, for what values of ω does the block make a simple rotation (i.e. $\alpha=0$) ?
4. Let B be a block whose orientation is specified by the matrix R, and suppose that orientation is a 90° rotation about the z-axis. Now suppose that the object starts to spin with $\omega=$ $(2,2,0)$. What is $d R / d t$?

