This Quiz is due in class on Friday August 28th. It will be graded. Make sure you include your name and section number on your answer sheet.

- 1. A vector v with n components can be treated as an $n \times 1$ matrix, i.e. a single column. Then the dot product of two n-vectors u and v corresponds to the matrix product $u^T v$, where u^T is the matrix transpose of u. Now let A be an $n \times n$ matrix. Show that if $u^T A v = v^T A u$ for all u and v, then $A = A^T$. Hint: consider orthonormal basis vectors for u and v.
- 2. Let a, b, c be vectors in \mathbb{R}^3 . Show that the 3×3 matrix whose columns are a, b, c, i.e. A = [a, b, c], satisfies $det(A) = a \cdot (b \times c)$ where \times is vector cross product.
- 3. A *linear function* f(v) of some vector v satisfies:

(a)
$$f(u+v) = f(u) + f(v)$$

(b) $f(\lambda u) = \lambda f(u)$ where λ is a scalar.

Any linear function of v can be written as the product of some matrix with v, i.e. as Av for some matrix A. Now suppose u and v are 3-vectors. Let \times be the usual cross product of vectors in \mathbb{R}^3 . Show that:

- (a) The cross product $f(v) = u \times v$ is a linear function of v.
- (b) Find the matrix A such that $u \times v = Av$ for all v. The matrix A will depend only on u, not on v. Aside: This matrix is often written as $u \times$, so that $u \times v = (u \times)v$.
- Recall that if A is an n × n matrix, then v is an *eigenvector* of A if it satisfies Av = λv for some scalar λ. The scalar λ is the *eigenvalue* corresponding to the eigenvector v. Let A be any n × n matrix. Show that all the eigenvalues of A^TA are non-negative.