This Quiz is due in class on Friday August 28th. It will be graded. Make sure you include your name and section number on your answer sheet.

1. A vector v with n components can be treated as an $n \times 1$ matrix, i.e. a single column. Then the dot product of two n-vectors u and v corresponds to the matrix product $u^{T} v$, where u^{T} is the matrix transpose of u. Now let A be an $n \times n$ matrix. Show that if $u^{T} A v=v^{T} A u$ for all u and v, then $A=A^{T}$. Hint: consider orthonormal basis vectors for u and v.
2. Let a, b, c be vectors in \mathbb{R}^{3}. Show that the 3×3 matrix whose columns are a, b, c, i.e. $A=$ $[a, b, c]$, satisfies $\operatorname{det}(A)=a \cdot(b \times c)$ where \times is vector cross product.
3. A linear function $f(v)$ of some vector v satisfies:
(a) $f(u+v)=f(u)+f(v)$
(b) $f(\lambda u)=\lambda f(u)$ where λ is a scalar.

Any linear function of v can be written as the product of some matrix with v, i.e. as $A v$ for some matrix A. Now suppose u and v are 3 -vectors. Let \times be the usual cross product of vectors in \mathbb{R}^{3}. Show that:
(a) The cross product $f(v)=u \times v$ is a linear function of v.
(b) Find the matrix A such that $u \times v=A v$ for all v. The matrix A will depend only on u, not on v. Aside: This matrix is often written as $u \times$, so that $u \times v=(u \times) v$.
4. Recall that if A is an $n \times n$ matrix, then v is an eigenvector of A if it satisfies $A v=\lambda v$ for some scalar λ. The scalar λ is the eigenvalue corresponding to the eigenvector v. Let A be any $n \times n$ matrix. Show that all the eigenvalues of $A^{T} A$ are non-negative.

