CS184 Review Quiz Solutions

Sept. 4, 1998

1. Let $u_{i}=[0, \ldots, 0,1,0, \ldots, 0]$, where 1 is at the i-th position. Let v_{j} be defined similarly. Then, we can see that $u_{i}^{T} A v_{j}=a_{i j}$ and $v_{j}^{T} A u_{i}=a_{j i}$. Since we are given $u_{i}^{T} A v_{j}=v_{j}^{T} A u_{i}, a_{i j}=a_{j i}$ for all $1 \leq i \leq n$ and $1 \leq j \leq n$. Therefore, $A=A^{T}$.
2. By the definition of cross product,

$$
b \times c=\left|\begin{array}{ccc}
i & j & k \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right|
$$

where i, j, k are the unit vectors, $i=(1,0,0), j=(0,1,0)$ and $k=(0,0,1)$.
$a \cdot b \times c=\left(a_{1} i+a_{2} j+a_{3} k\right) \cdot\left|\begin{array}{ccc}i & j & k \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|=$
$a_{1} \cdot\left|\begin{array}{cc}b_{2} & b_{3} \\ c_{2} & c_{3}\end{array}\right|-a_{2} \cdot\left|\begin{array}{cc}b_{1} & b_{3} \\ c_{1} & c_{3}\end{array}\right|+a_{3} \cdot\left|\begin{array}{cc}b_{1} & b_{2} \\ c_{1} & c_{2}\end{array}\right|=\left|\begin{array}{ccc}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right|$.
3. (a) Since cross product has the distributive property,

$$
f(v+w)=u \times(v+w)=u \times v+u \times w=f(v)+f(w)
$$

You can also "factor out" a scalar value from a cross product,

$$
f(\lambda v)=u \times \lambda v=\lambda(u \times v)=\lambda f(v)
$$

Therefore, $f(v)=u \times v$ is a linear function of v.
(b) $u \times v=\left|\begin{array}{ccc}i & j & k \\ u_{1} & u_{2} & u_{3} \\ v_{1} & v_{2} & v_{3}\end{array}\right|=\left(u_{2} v_{3}-u_{3} v_{2}\right) i+\left(u_{3} v_{1}-u_{1} v_{3}\right) j+\left(u_{1} v_{2}-\right.$ $\left.u_{2} v_{1}\right) k$.

In matrix form, this is equal to $\left(\begin{array}{ccc}0 & -u_{3} & u_{2} \\ u_{3} & 0 & -u_{1} \\ -u_{2} & u_{1} & 0\end{array}\right) \cdot\left(\begin{array}{l}v_{1} \\ v_{2} \\ v_{3}\end{array}\right)=A v$.
4. We assume that A is a real matrix. Let v be an eigenvector of $A^{T} A$. Let λ be its corresponding engenvalue. Then,

$$
A^{T} A v=\lambda v
$$

Left-multiply each side by \bar{v}^{T}, where \bar{v}^{T} is the conjugate transpose of v. We now have

$$
\bar{v}^{T} A^{T} A v=\bar{v}^{T} \lambda v
$$

Notice that $A^{T}=\bar{A}^{T}$ since A is a real matrix. Therefore,

$$
\begin{aligned}
& \bar{v}^{T} \bar{A}^{T} A v=\lambda \bar{v}^{T} v \\
& \overline{(A v)}^{T} A v=\lambda \bar{v}^{T} v
\end{aligned}
$$

Notice that $\overline{(A v)}^{T} A v=\|A v\|^{2}$, which is non-negative. Similarly, $v^{T} v=$ $\|v\|^{2}$, which is also non-negative. Since

$$
\|A v\|^{2}=\lambda\|v\|^{2}
$$

λ is non-negative. Therefore, all eigenvalues of $A^{T} A$ are non-negative.

