Robust Motion Planning for Mobile Robots

Paul Jacobs*
LAAS-CNRS

Abstract

In this work, we introduce a notion of robustness for a mobile
robot trajectory, which captures the sense that there are “nearby”
trajectories which are also collision-free and satisfy the kinematic
constraints. We present an algorithm which is guaranteed to plan
robust paths with running time O(n*logn + %), where n is the
number of obstacle vertices and § is a measure of the robustness
of the path. We also discuss the modifications required for the
algorithm to allow for uncertainty in position.

1 Introduction

Quality measures used for evaluating trajectories have usually
related to mirnimizing the distance traveled or the transit time.
However, as planning algorithms are implemented for real-world
systems, there must be an acknowledgment of the difficulty of
control. Trajectories must also be evaluated on the basis of their
robustness to tracking errors. When there are no constraints on
the allowable motions, these errors can be accounted for by grow-
ing obstacles to include some safety margin. In the case of a
mobile robot, this is not enough. A mobile robot will typically
be subject to a nonholonomic kinematic constraint. This implies
that the dimension of its configuration space, R% x S, will be
larger than the number of degrees of freedom, and therefore not
all trajectories will be feasible. Thus, we must check that trajec-
tories exist that allow recovery from errors in both position (Rz)
and orientation (S'). It may occur that finding a collision-free
recovery trajectory may entail starting the planning process from
the beginning and will be too time-consuming to perform on-line.
Therefore, allowing for simple recovery trajectories must be made
a part of the planning algorithm by insuring that it finds a nominal
trajectory which can tolerate errors in position and orientation.
When we are searching for a path to be used in a real-world sys-
tem it is more important that the path allows us to recover from
errors than that it is the absolute shortest or the time optimal.
There are also theoretical reasons to require robustness of
trajectories. While no lower bounds have been established for the
problem of planning smooth paths in the plane, there are indi-
cations that it may be intractable to find an exact path. In this
paper, we discuss approximation algorithms which address the
problem. However, for an approximation algorithm to be well-
posed, a neighborhood of feasible trajectories must exist around

*Research supported by the David and Lucile Packard Foundation and by
Groupement Robots d’Intervention sur Site Planetaire (RISP). This author
is at the Laboratoire d’Automatique et d’Analyse des Systems, 7, Avenue du
Colonel Roche, 31077 Toulouse Cedex, France.

1Research supported by the David and Lucile Packard Foundation and by
PYI grant number IRL-89.8577. This author is with the Dept. of Computer
Science at the University of California at Berkeley.

CH2876-1/90/0000/0002$01.00 © 1990 IEEE

John Canny!
UC Berkeley

the trajectory being searched for.! It is this notion of a neighbor-
hood around a path that we characterize as robustness.

In the algorithms given here and in [1], there has been no
theoretical reason to allow for errors in position. This was not
required to ensure the well-posedness of the approximation algo-
rithm, because we already knew the form of the canonical trajec-
tories and that they pass through points on the boundaries of the
obstacles.? However, we may wish to allow for perturbations in
position for practical reasons. In reality, errors in position and
heading are not decoupled. Thus, it is useful to build this into a
robust planning algorithm. We present a simple extension to the
basic algorithm which allows for robustness in position as well as
orientation.

We analyze the configuration space obstacles for trajectories
which satisfy the non-holonomic constraints imposed by the kine-
matics of a mobile robot. We use this characterization as the
basis for a plane sweep algorithm which computes the configura-
tion space obstacle for a trajectory segment in time O(n?logn),
where n is the number of obstacle vertices in the representation of
the obstacles. We present an algorithm to generate robust paths
with running time O(ntlogn + %;—), where 8 is a measure of the
robustness of the path.

1.1 Previous Work

The specific problem we consider in this paper was first addressed
by Dubins [2], who gives the form of the shortest bounded cur-
vature path in the absence of obstacles. After him, there was a
hiatus of nearly thirty years, until Laumond published work on
the problem in the case that obstacles in the workspace must be
avoided [3]. Unfortunately, the method presented there is not
guaranteed to find a path. In Fortune and Wilfong [4], a decision
algorithm is given to decide if a path exists under given condi-
tions. The algorithm is exact, but does not generate the path in
question. This algorithm runs in time doubly exponential in the
complexity of the environment. Their work also introduces the
notion, used here, of forming a configuration space for trajecto-
ries. The algorithm we have presented in [1], is an approximation
algorithm to solve the problem.

Laumond [5] has presented fundamental work which we can
relate to the notion of recovery trajectories. He shows that if
there exists a path which connects two points of the configuration
space, then there exists a path which respects the nonholonomic
kinematic and maximum curvature constraints imposed by the
mobile robot. However, the trajectories which allow the robot to
move from one configuration to another will, in general, consist
of many back and forth maneuvers. Furthermore, the number of
these maneuvers required is unknown. In fine motion planning,

!Since it is by definition that, in general, the approximate trajectory can
not exactly track the optimal.

2Thus a trajectory approximating an optimal trajectory will also pass
through the boundaries of the same obstacles.

the notion of error detection and recovery is due to Lozano-Perez,
Mason and Taylor [6]. The concepts embodied in this framework
are somewhat different than those we consider here.

2 Review of Terms and Theorems

In (1], we presented an algorithm for planning paths for a mobile
robot subject to the nonholonomic kinematic constraint imposed
by the Pfaffian dz tan — dy = 0 and the constraint imposed by
a bound on the change in 4. In this section, we review the major
results and terminology from that paper which will be needed
here.

2.1 Statement of the Problem
Here we give a precise formulation of the general problem of
planning minimal-length (equivalently, minimal-time) unit speed
paths with bounded average curvature.

Problem Statement

Let © C R? be a (closed) set of polygons in the plane with a
finite number of vertices. This set represents the obstacles in the
environment. 9§} represents the boundary of the set of obstacles
and int(§2) denotes its interior. The variable R is the minimum
turning radius of the mobile robot.> We consider the class of
paths X (t) € R? which satisfy the following constraints.?

1. X(0) = IP, 8(0) = 8.5

2. 3ty > 0, such that X(ty) = FP, 0(ts) = 65.

3. X(t) € R%\ int(Q), Vt € [0,5].

, . 1
4. [|X (@)l = (%) + 57 (1)* = 1, VL € [0, 24}
5. Given R > 0, [X(t1)- X (t2)l| < R [t1—tal, Vt1,t2 € [0,24].

. The problem is to find a path X*(t) defined for ¢ € [0,t}]
such that t3 is minimal over all paths in this class.

2.2 Relevant Theorems from Previous Work

In this section, we present some theorems which relate to the
method of motion planning for mobile robots given in [1]. We will
refer back to these later in this paper.

The following corollary to Proposition 1 of Dubins[2] allows
us to consider only shortest paths in our planning method.
Corollary 2.1 ([7]) If 3X satisfying the conditions of the prob-
lem statement with finite length, then 3X* of minimal length
which also satisfies the conditions.

Definition 2.2 A simple path is a a C' curve which is either
1. en arc of a circle of radius R, followed by a line segment,
Jollowed by an arc of a circle of radius R.
2. a sequence of three arcs of circles of radius R.
3. a subpath of a path of either of these two types.

The following corollary to Theorem 1 of Dubins[2] gives us
the form of the shortest paths.

Corollary 2.3 ([7]) Every minimal length planar curve X for
which

1. The constraints of the problem statement are satisfied.

2. X*(0), X*(t}) € (R*\ Q) 0Q.

3. X*(t) e (RZ\), vt €10, %[

3The maximum average curvature of the path is therefore R

4This general formulation of the problem is due to Dubins [2].

5If we describe the path X(t) € R2 in coordinates by (z(t),y(1)),
we can compactly represent the velocity vector in this system by at) =
atan2(§(t), #(t)), where the function atan2(a, #) gives the arctangent respect-
ing the signs of a and 8.

is, Vi € [0,1}], necessarily a simple path.

Proof. The proof of this corollary consists of three parts.
We sketch these parts here. It follows the basic outline of the
proof given by Dubins for the case when there are no obstacles in
[2]. We assume, throughout, without loss of generality that the
minimum radius of curvature of a path is 1.

Step 1 Suppose there exists a path X *(¢) of minimal length
t} satisfying the constraints of the problem statement such that
X*(t) € U, Vt € [0,t}], where U is open and disjoint from Q. In
Steps 1 and 2, we show that X*(¢) must be a simple path. Because
the set {X*(t)]t € [0,¢}]} is compact there is a minimal distance ¢
between it and the boundary of U. Because U is open € > 0. Now
partition the curve X*(-) into pieces of length §. Between the
endpoints of each piece, the shortest path must be the minimal
length path without obstacles (because the length of each path is
less than € it must lie entirely within U.) By Dubins [2], this is a
simple path.

Step 2 We have shown that the path X*(2) of Step 1is com-
posed of arcs of unit circles and line segments. Following the proof
of Dubins [2], in order to show that X*(t) is, in fact, a simple path
itself reduces to showing that any sequence of four arcs (denoted
CCCC), two arcs and a line (CCL), or a line followed by an arc
followed by a line (LCL) can not be on a minimal length path. We
do so by showing that, in each case, there exists a homotopy (a
continuous deformation) which respects the curvature constraints
and shortens the path. Because the points of the deformed curve
can be arbitrarily close to the original, the deformed curve must
also lie in U. Thus the original could not be of minimal length.

Step 3 Now suppose there exists a minimal length path X*()
satisfying the theorem statement. In particular, X*(t) is disjoint
from § except possibly at X*(0) or X*(¢7). Given any § > 0 the
path X*(t) for t € [4, ;- 6] lies in an open set which is disjoint
from Q, and thus must be a simple path. By continuity, X*(t)
must be a simple path. |

We present here the deformation of the CCL type paths. The
others can be found in [2, 7].

Lemma 2.4 The arc-length of any curve of type CCL can be re-
duced by a homotopy which respects the curvature constraints.

Proof. We start by considering the case that the second
circular arc has length greater than m. Without loss of generality,
we place the first circle with origin (0,0). We consider the line
y = l. We place the initial point of the curve at (—1,0) and the
the final point at (—4,1).5 We assume that the initial direction of
travel is in the clockwise sense.

We consider the path given by the placement of a third circle
with center'(z,1+1), and then placing the second circle to match,
such that the path along the second circle is of length at least 7.
When z = /~(I + 1)(I — 3), the second circle is tangent to the
line and the path does not traverse the third circle at all. This is
the configuration which yields the CCL path. The deformation is
illustrated in Figure 1. Three different values of x are shown, the
one on the farthest right corresponds to the CCL path.

We will only analyze the cases for which 3 > [> —1 since the
problem is symmetric. We will show that the length of the path
D(z,!) monotonically decreases for z less than this value.”

D(z,l): = 3?” + z + 4 + 4 arccos(d/4) (2.5)

SAny change in these has the effect of adding a constant to the length of
the path.

"The distance function given only holds for z between —/—(I+ 5)(I — 3)

and \/—(1+ 1)(I — 3). For z larger than the upper point, there is a 27 jump
in the path length. For z lower than the lower bound, there is no possible
second circle.

©.0)

Figure 1: Deformation of the CCL Path

Figure 2: Deformation of Short CCL Paths

d = 2+ (1 +1)? (2.6)

where d is the the distance between the centers of the first
and third circles. By taking the first and second derivatives
of D(z,1), we find that the critical point of this function is at
V=0 +1)(T=3) and it is a maxima. Thus, the CCL path is al-
ways longer than the nearby deformed path obtained by reducing
z.

Now we consider the simpler case that the second circle has
an arc length less than or equal to 7. In this case we can move the
second circle along the line to shorten the straight line portion,
and then connect the first and second circles by means of the
straight line tangent to both which respects the orientation. This
clearly reduces the arc length. Thus, we have a deformation which
shortens the path for this case. The deformation is illustrated in
Figure 2.

3 A Notion of Robustness

We make use of Corollaries 2.1 and 2.3 in order to characterize
trajectories for a mobile robot. Together, these state that if a
trajectory exists which satisfies the curvature constraints, then
one exists which consists of sequences of simple paths alternating
with (possibly single point) portions of the obstacle boundaries.
We consider such paths as a canonical set of mobile robot trajec-
tories. That is, finding a path reduces to searching within this set
(see 1] for such a search algorithm). In this work, we introduce
a notion of robustness which is associated with these canonical
trajectories.

3.1 Robustness in Position

The notion of planning trajectories which allow for inaccuracies
in the model of the environment or in locating the robot in its
workspace is not a new one. Typically, these errors are accounted
for by allowing a liberal growth of the obstacles by convolving
them with a disk which represents the size of the uncertainty. We
do the same in this work. However, due to the constraints on the
turning radius, the application of this technique is not entirely
straightforward when we perform the search for a trajectory in
the set of canonical paths. We note that the obstacles no longer

have the form of polygons.® The boundary of the grown obstacle
consists of circular arcs of radius R, around the vertices connected
by line segments parallel to the original edges. In Section 4.1, we
discuss the additions which must be made to the search algorithm
of [1] to account for a possible position error of size R,.°

3.2 Robustness in Orientation

It is in the notion of robustness to orientation errors that we make
use of the canonical trajectories. First of all, the grown obstacle
boundaries are smooth. This implies that, at the point a simple
path leaves an obstacle boundary, the orientation of the robot is
fixed. Positions on the boundary of the grown obstacle encode
not only the location of the robot but also its direction, because,
to have a smooth path, the disk of radius R, must pass either
tangent to an edge of the original obstacle or, if it contacts at a
vertex, it must locally travel along the tangent to the circle at the
point of contact.

The fact that each orientation is associated with a position
on the obstacle boundary has the effect that an orientation error
induces a change in position at the end of a simple path. Even
so, we discuss robustness of the simple paths based only upon an
interval of orientation. That is, we denote the position along a
grown vertex by the angle to that point from the original polygon
vertex.'®

Definition 3.7 A simple path is robust in orientation pro-
vided that
1. it is collision-free
2. if a small perturbation in orientation (position) is made at
each point where the path passes through a grown vertez
(edge), the path will remain collision-free, and will continue
to pass in order through the same set of obstacle vertices and
edges.

4 Generating Robust Paths

In this section, we present an algorithm which is guaranteed to
generate paths which are robust to errors in both position and
orientation. In the grid-based algorithm of [1], we never explic-
itly computed the regions generated by mapping the workspace
obstacles into each configuration space. The grid algorithm only
required that we find slices of the configuration space obstacle.
In order to guarantee robustness in orientation, we determine the
entire obstacle. We note that the types of constraints given in
(1] remain the same. There are, however, changes in calculating
them due to the growth of obstacles from the position robustness.

4.1 Planning with Grown Obstacles

Once the obstacle has been grown, motion planning can once again
be done for a point, and Corollary 2.3 stating the form of the
canonical trajectories applies. In order to search for the path
in the set of canonical trajectories, we consider the simple paths
passing between pairs of edges or grown vertices of the polygo-
nal obstacles. As in [1], this search is performed by transform-
ing the obstacles into a configuration space for the simple paths.
But ‘to have a configuration space, we must find the appropriate
parametrization of the simple paths. Because the obstacles have

8Qur proof of Corollary 2.3 is sufficiently general to allow for such a set Q
of obstacles.

9The same constructions clearly apply to the problem of planning for a
robot whose shape is a disk of radius R,. We will frequently use this analogy in
the following discussions, because it is more easily visualized than a trajectory
which is not allowed to violate some region.

19 Because we must also allow for paths which touch along an obstacle edge,

we include under the heading of robustness in orientation, errors in position
where a simple path touches along an obstacle edge.

Figure 3: Possible Centers of Curvature when R. > R,

been grown, we must determine where the centers of curvature for
a trajectory segment may lie. Once the centers of curvature and
the type of simple path have been defined, the actual trajectory
is a function of the location of the center of curvature at each
endpoint.

For a simple path which leaves from a given point along a
grown obstacle vertex, there are two possible initial directions of
travel. Associated with each direction are two possible trajectory
circles of radius R, and associated loci of curvature centers which
are circles of radius R.+ R, and |R. - R,| centered at the original
vertex. The two circles correspond to left and right handed turns
from the point on a grown vertex. There are two cases of interest,
based on relative sizes of the minimum turning radius, R and the
allowable position error, R,. .

When the turning radius is less than the radius of uncertainty,
then only the centers of curvature on the circle with radius R.+ R,
are permitted, since any trajectory circle with a center on the
R, — R, circle will intersect the grown vertex in a neighborhood
of the boundary point. When R > R,, all four trajectory circles
can contribute a portion of the simple path. Thus, both circles of
curvature centers are allowed.

When the turning radius R, is less than the size of the posi-
tion uncertainty R,, the minimal length trajectories may include
portions of the grown obstacle vertices, which are arcs of circles
of radius R,. This is handled as a special case, by allowing the
robot to pass from any point on the boundary of the obstacle to
any other which lies in the correct direction.

Figure 3 depicts the possible locations of the center of curva-
ture of a trajectory which passes through the boundary of the
grown obstacle when the minimum radius of curvature,R., is
larger than the dimension of the position error, R,. The dark
lines represent the boundary of the grown obstacle and the shaded
lines represent the possible locations of the centers of curvature.

4.2 Generating Robustness in Orientation

In this section, we give an overview of the structure of the algo-
rithm to generate paths which are robust to orientation errors.
The operation of the algorithm is illustrated in Figure 4, where
we search for a path passing from IP through A to FP. As shown,
we represent the free configuration space by quadtrees. The lower
configuration space represents all of the simple paths which start
out turning left and end turning right and that pass between IP
and A, with angles at IP on the horizontal axis and angles at A
on the vertical. The upper configuration represents those paths
from A to FP. We can see that by starting at 8; we can reach the
quadtree cell at the upper right hand corner of the lower configu-
ration space. This translates into a range of orientations at point
A, all of which can be reached following a collision-free simple
path from (IP,6;). This range at A overlaps the larger quadtree
blocks in the configuration space for A to FP. Thus all of the corre-
sponding orientations at FP can be reached starting at any of the
orientations at A, and hence from (I P, ;). If we construct a graph

R

Figure 4: Quadtree in Configuration Space

whose nodes represent ranges of orientations at the points on the
obstacle boundaries, and whose links represent the fact that the
cartesian product of the two ranges overlap a free quadtree block
in the appropriate configuration space, we can find a collision-free
robust trajectory using a graph search.

The quadtree is a natural representation of regions in config-
uration space, because each quadtree cell represents the cartesian
product of a range of orientations at each endpoint of the sim-
ple path. Therefore, the quadtree cells contained in a free region
of configuration space have the nice property that, if a range of
orientations overlaps a quadtree cell, all of the final orientations
represented by that quadtree cell can be reached from that range.
Therefore, in computing a quadtree representation of a configu-
ration space, all subdivisions are made only in that space and do
not affect the divisions required in any other space.!!

4.3 Plane Sweep in Configuration Space

In order to compute a quadtree representation of configuration
space, we must know how to transform the set of obstacles 2 into
configuration space. The constraint curves discussed in [1] cut
out regions in the configuration space. For all of the trajectories
represented by the interior of such a region, the number of inter-
sections with obstacles is constant. The parts of the constraint
curves which form the obstacle boundary are all those pieces which
separate a region with zero intersections from one with non-zero
intersections. We can determine these pieces using a plane sweep
algorithm.

In order to perform a plane sweep, we must know when the

11This property makes the algorithm trivially parallelizable.

Figure 5: Plane Sweep in Configuration Space

sweepline intersects each constraint curve. As the swee » line pro-
gresses, it will overlap different regions of the configurav.on space
as illustrated in Figure 5. Although we envision the sweepline
moving continuously across the configuration space, in reality it
moves by jumping between consecutive angles at which the ar-
rangement of the curves along the sweepline can change. To de-
termine these critical angles, we must have a description of the
form of the constraint curves. A tree holds the constraint curves
which are currently crossed by the sweep line. The intervals of
the sweep line between intersections with the curves correspond
to connected regions of C-space cut out by the constraints. The
regions may change their size and shape, but they appear and dis-
appear only at the critical angles of the constraint curves which
bound them. At each critical angle the sweep line structure is
updated to reflect the changes in the affected regions.

We must also have a method to determine the number of in-
tersections for a region as it is found during the plane sweep. This
can be done because each critical angle is associated with a small
number of constraint curves, and hence with a small number of
edges in the environment. The basic idea is to keep a tally for
each region of the number of intersections its trajectories make
with the obstacles. When this number is non-zero, the region is
part of the configuration space obstacle. The number of intersec-
tions for a new region can be determined in constant time from an
adjacent region for which the number is known. This is because
each constraint curve is associated with only a few edges in the
environment. The techniques have been discussed in detail in [9).

4.4 Topology and Geometry of Constraints

The type of critical angle which is crossed determines the number
and type of regions which result. In order to perform the sweep in
time proportional to the number of critical angles, there must be
a method for determining in constant time which critical angles
cause qualitative changes in the boundary of the C-space obstacle.
There are three types of critical angles at which the sweepline will
enter or leave a region. They are 1) extrema of the constraint
curves with respect to 8; or 8y, 2) endpoints of the curves, or 3)
intersections between constraint curves. In this section, we show
that it is possible to rigorously analyze the form of the curves
in configuration space which are generated by the obstacles to
determine the extrema. Similar procedures can be followed to
determine the endpoints.

Once the obstacles are grown, the configuration spaces are of
a different nature. They may have disconnected pieces, depending
upon whether or not the obstacle was convex. However, the con-
straint curves are generated in exactly the same fashion as in [1].
That is, there are exactly four types of constraint curves. Some
slight modifications must be made to allow for the circular arcs
which have replaced the vertices. However, we note that when the
constraints are computed using the dual formulation considering
the location of the centers of curvature, then there is almost no

change.

In this section, we will only examine the constraint in con-
figuration space generated by the pairings of angles for which the
arc-line-arc simple path is actually just an arc-arc simple path,
that is the two circles are just touching. This constraint, called
Type D in [1}, forms the boundary of the region in configuration
space in which certain simple paths may exist.

Suppose we have an arc-line-arc simple path which passes
between two obstacle vertices. Let us consider a circle of radius
R, rolling along each grown vertex of an obstacle represented by
an arc of radius R,. Without loss of generality, we can place the
first vertex at (0,0) and the second at (Ax,0). We write the center
of the initial circle as ((R. + R,)cos8;,(R. + R,)sin6;) and the
final as (Az + (R + R,)cosy,(R. + R;)sin8;). We consider
the function f(6;,0;) giving the square of the Euclidean distance
between them. We know that the two circles are just touching
when f(6;,8;) = 4R2, thus the set f~1(4R2) is the Type D curve.

We begin analyzing the form of the constraint curves using
the techniques of differential topology. We will only use some
simple results about the level sets of smooth functions. For the
details, see [9]. In order to find the critical points of the curve
we take the partial derivatives and set them equal to zero, while
requiring f(6;,685) = 4R2.

% = 2(R.+ R,)Azsinb; +

2(R. + R,)sin(6; — 6;) =0 (4.8)
of _ .
20, = —2(R: + R,)Azsinfy —

2(R. + R,)%sin(8; — 0;) = 0 (4.9)

In order to find the critical angle of the first or last inter-
section of the sweepline with the Type D curve, we must know
the location of the extrema with respect to §; and 6;. In general,
these occur in the case that one or the other of Equations 4.8 and
4.9 is satisfied. We can show that there exist angles (#;,8;) for
which both partials are zero if the distance between the two ver-
tices is exactly 2R., 2R,, 4R.+ 2R,. In these cases, the Preimage
theorem [10, p.21], states that f~'(4R2) is not a smooth curve.
These must be treated as special cases, but they can be resolved
simply.

At this point, it appears that we must solve transcendental
equations in order to find the extrema of the curves with respect
to 8; or 8;. However, by recognizing the geometrical equivalents to
Equations 4.8 and 4.9, we reduce the problem to one of finding the
intersections between circles. By looking at projections implied by
these equations we can show that the critical angles can be found
by intersecting circles of radius R, + 3R, and R, — R, around
one vertex with a circle of radius R, + R, around the other. This
gives a simple geometric characterization of these extremal points
in terms of a quadratic equation describing the intersection of two
circles.

Figure 6 depicts the Type D curves in configuration spaces
for which the form of the curves fundamentally changes. These
correspond to different separations between endpoints of the sim-
ple paths (which are vertices in this picture). For clarity, we have
chosen, R. =1 and R, = 0.

4.5 Complexity of the Search Algorithm

By the enumeration of critical angles, we can see that there are
O(n?) of them. Because we must sort them, the plane sweep
algorithm takes O(n?logn), where n is the number of corners in
the environment, for each such piece of configuration space. All
told generation of the O(n?) pieces of configuration space then
takes time O(n*logn).

- O

Figure 6: Form of the Type D constraint curves for different val-
ues of Az. From left to right: 0 < |Az| < 2; |Az|=2;
2 < |Az| < 4. (Illustrated for R, = 1 and R, =0.)

If we perform our search using Dijkstra’s algorithm, and there
are at most 0(%;—) quadtree blocks, this is the complexity of the
search, disregarding the cost of generating the quadtree blocks.
This can be done during the plane sweep at a cost proportional
to the number of blocks. Therefore, the search requires time
O(ntlogn + %;—)

4.6 Robustness of the Paths

Using the quadtree-based algorithm, the search will yield a path
which is robust to orientation perturbations. Furthermore, there
are some nice properties to robust paths, besides the practical
benefit of having a path which is less sensitive to errors in the
trajectory following capability of actual mobile robot.

We first examine when the algorithm will find a robust path.
In this discussion, we will consider spacing along a grown vertex.
The case for edges is similar although the minimum spacing may
differ. Suppose we can fit a square with sides length 6 in free
space. Such a square is associated with a robust simple path.
The perturbation in orientation which can be tolerated is :l:% on
either side of the nominal angle. A complete path from IP to FP
which consists of simple paths all tolerating at least this large of
a perturbation is called a §-robust path.

Because the quadtree-based algorithm makes use of a regular
tesselation of the configuration spaces, we must consider the effect
of choosing free blocks in the configuration space which are aligned
with the quadtree edges. It turns out that it is not true that if a é-
robust path exists, that the algorithm will find it. This is because
the algorithm will only search the set of 6-robust paths where
the squares in configuration space are aligned with the quadtree
blocks. However, if a §-robust path exists, there exists an aligned
%«robust path. This is because, in each configuration space, the
é-robust path is associated with an interval of initial angles of size
é. Such an interval must necessarily completely overlap at least
one interval of length -g- aligned with the quadtree. Because of the
overlap property discussed in Section 4.2, any final angles which
can be reached from an orientation in the interval of length § must
also be reachable from an orientation in the interval of length %.

The smaller blocks completely capture the connectivity of
the path, although they do lose some of the robustness. One
advantage however is that the same overlap property eliminates
the necessity for looping more than a few times. It implies that
if a -robust path passes through a vertex more than once and
overlaps the same quadtree block of size % then all of the trajec-
tory between the first and last passage through this vertex can
be eliminated. By the overlap property, no advantage is derived
from visiting the vertex and overlapping a range more than once.
The connectivity of the path preceding and following the loop is
retained.

5 Consequences of Robustness

In this paper, we have presented a notion of robustness which is
closely aligned with the concept of canonical trajectories given by

Corollary 2.3. In concluding, we would like to point out what we
see to be the benefits of this linkage and of robustness in general.
As we have noted above, the concept of robustness puts an a
priori limit on the number of loops which can exist in a trajectory.
Because the idea of robustness to orientation errors has been
defined with respect to the endpoints of simple paths, this gives
an idea of critical points along the trajectory at which the robots
performance can be compared against the error bounds.

We have been considering only the representation of robust
paths in the configuration space for simple paths. However, by
looking at the envelope generated by each robust simple path
passing between two obstacle vertices or edges, we can see that
we have essentially divided the real environment up into chan-
nels. Furthermore, because orientation errors are specified for
both endpoints of the simple path, the induced position errors
are independent of the size of the environment. Thus uncertainty
in position can essentially be decoupled from orientation errors. In
contrast, if the allowable orientation error was specified for only
one endpoint, the associated position error increases the longer
the path is followed.

Finally, the nominal trajectories are specified in a robust
manner. That is, if a given nominal simple path ends in a right
hand turn, then its robustness implies that, as long as the robot is
remained within its error bounds, no sensing is needed along the
trajectory to determine whether a right or left turn is required
in order to fall within the robust interval; a right hand turn will
always suffice. This is useful because such a decision would be
very sensitive to errors in sensing.

References

[1] P. Jacobs and J. Canny, “Planning smooth paths for mobile
robots,” in Proceedings of the 1989 International Conference
on Robotics and Automation, pp. 2-7, IEEE, May 1989.

[2] L. E. Dubins, “On curves of minimal length with a constraint
on average curvature and with prescribed initial and terminal
positions and tangents,” American Journal of Mathematics,
vol. 79, pp. 497-516, 1957.

[3] J.-P. Laumond, “Finding collision-free smooth trajectories
for a non-holonomic mobile robot,” in IJCAI 87 Proceedings
of the Tenth International Joint Conference on Artificial In-
telligence, (Milan), pp. 1120-1123, IJCAI, Inc., August 1987.

[4] S. Fortune and G. Wilfong, “Planning constrained motion,”
in STOCS, (Chicago IL), pp. 445-459, Association for Com-
puting Machinery, May 1988.

[5] J.-P. Laumond, “Feasible trajectories for mobile robots with
kinematic and environment constraints,” in International
Conference on Intelligent Autonomous Systems, (Amster-
dam), pp. 346-354, 1986.

[6] T. Lozano-Perez, M. Mason, and R. Taylor, “Automatic syn-
thesis of fine motion strategies for robots,” International
Journal of Robotics Research, vol. 3, no. 1, 1984.

(7] P. Jacobs, “Minimal length curvature constrained paths in
the presence of obstacles,” LAAS/CNRS Report 90042, Lab-
oratoire d’Automatique et d’Analyse des Systemes, February
1990.

[8] K. Mehlhorn, Data Structures and Algorithms 3: Multi-
dimensional Searching and Computational Geometry. Berlin:
Springer-Verlag, 1984.

[9] P. Jacobs, “Planning robot motion with dynamic con-
straints,” Tech. Rep. ESRC 89-21/RAMP 89-17, University
of California, Berkeley, Engineering Systems Research Cen-
ter, October 1989. PhD Thesis.

[10] V. Guillemin and A. Pollack, Differential Topology. Prentice-
Hall, 1974.

