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Abstract: It has been recently shown that the
joints of a general 6R manipulator can orient them-
selves in 16 different configurations (at most), for a
given pose of the end—effector. However, there are no
good practical solutions available, which give a level of
performance expected of industrial manipulators. In
this paper, we present an algorithm and implementa-
tion for real time inverse kinematics for a general 6R
manipulator. The algorithm involves symbolic pre-
processing, matrix computations and a variety of nu-
merical techniques. The numerical accuracy of these
operations is well understood and for most cases we
are able to compute accurate solutions using 64 bit
IEEE floating point arithmetic available on most work-
stations. The average running time of the algorithm,
for most cases, is 11 milliseconds on an IBM RS/6000
workstation.

1 Introduction

The inverse kinematics problem for six-link manipula-
tors is a central problem in automatic robot control.
Given the pose of the end effector (the position and
orientation), the problem is to compute the joint pa-
rameters for that pose. The complexity of this prob-
lem is a function of the geometry of the manipulator.
While the solution can be expressed in closed form
for a variety of special cases, such as when three con-
secutive axes intersect in a common point, no such
formulation is known for the general case. The main
interest has been in a 6R manipulator, which has six
revolute joints, the links are of arbitrary length and
no constraints are imposed on the geometry of various
links. It is not clear whether the solutions for such a
manipulator can be expressed in closed form. Itera-
tive solutions (based on numerical techniques) to the
inverse kinematics for general 6 R manipulators have
been known for quite some time. However, they are
slow for practical applications and unable to find all
the solutions. As a result, most industrial manipula-
tors are designed sufficiently simply so that a closed
form exists.

In the absence of a closed form solution, it is
widely beleived that the problem of inverse kinematics
for a general manipulator is considered solved when
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o A tight upper bound on the number of solutions
has been established.

o An efficient, numerically sound method for com-
puting all solutions has been developed.

At the same time, we feel, it is important that the solu-
tion be able to provide a level of performance expected
of industrial manipulators.

The inverse kinematics problems has been stud-
ied for at least three decades. The earliest systematic
attempt on the inverse kinematics problem appears to
have been by Pieper [10]. The work on the general
version of the problem for 6 R manipulator includes
that of Roth, Rastegar and Scheinman [13], Albala
and Angeles [1] and Duffy and Crane [4]. Tsai and
Morgan used a higher dimensional approach to the
inverse kinematics problem [15]. In particular, they
cast the problem as eight second-degree equations and
solved them numerically using polynomial continua-
tion. Complementing this approach is the lower di-
mensional approach, where a single polynomial in the
tangent of the half-angle of one of the joint variables
is derived. After trying many configurations Tsai and
Morgan conjectured that 16 is an upper bound on the
number of solutions. The first conclusive proof of the
fact that the problem can have at most 16 solutions
was given by Primrose, [11], using Duffy and Crane’s
formulation. Finally, Lee and Liang, [7], gave the exact
solution in lower dimension by reducing the problem
to a 16 degree polynomial. Moreover, Raghavan and
Roth, [12], used dialytic elimination to derive a 16 de-
gree polynomial as well. Complementing these results
[9] presented an example consisting of a manipulator
and a pose of the end effector such that the inverse
kinematics problem has 16 real solutions and thereby,
establishing the fact that 16 is a tight bound on the
number of solutions.

As far as implementations of these algorithms are
concerned, only continuation methods have been able
to solve the problem for a variety of cases [15, 16].
According to [16], lower dimensional methods like the
one in [12] are impractical due to numerical problems.
At the same time algorithms based on continuation
methods are rather slow. The best known algorithm
takes about 10 seconds of CPU time on an IBM 370 —



3090 using double precision arithmetic [16], which falls
short of what is expected of industrial manipulators.
As a result no good practical solutions are available
for the inverse kinematics of a 6R manipulator.

In this paper we present an algorithm and imple-
mentation for real time inverse kinematics for a gen-
eral 6R manipulator. We make use of the results pre-
sented in [12]. However, we perform matrix operations
and reduce the problem to computing eigenvalues and
eigenvectors of a matrix as opposed to computing a
univariate polynomial in the tangent of a half-angle of
a joint variable. The main advantage of this technique
lies in its efficiency and numerical stability. The algo-
rithms for computing eigenvalues and eigenvectors of
a matrix are backward stable and fast implementations
are available [6, 2]. This is in contrast with expand-
ing a symbolic determinant to compute a degree 16
polynomial and then computing its roots. The latter
method is relatively slower and the problem of comput-
ing roots of such polynomials can be ill-conditioned
[17]. The numerical stability of the operations used in
our algorithm is well understood and we are able to
come up with tight bounds on the accuracy of the so-
lution. Furthermore, for almost all instances of the
problem we are able to compute accurate solutions
using 64 bit IEEE floating point arithmetic. More-
over, the average running time of the algorithm is 11
milliseconds on an IBM RS/6000. In a few cases we
need to use sophisticated techniques like solving gen-
eralized eigenvalue system and the resulting algorithm
may take up to 25 milliseconds on the IBM RS/6000.

The rest of the paper is organized in the following
manner. In Section 2, we review the inverse kinematics
problem and reduce the problem to solving a system of
multivariate polynomials. We also give a brief preview
of the lower dimensional approach presented in [12].
The algorithm has been presented in Section 3 and we
discuss its accuracy, implementation and performance
in Section 4.

2 Inverse Kinematics

We use Denavit-Hartenberg formalism, [3], to model
the 6 R manipulator. Each link is represented by the
line along its joint axis and the common normal to
the next joint axis. The links of the 6R manipulator
are numbered from 1 to 7. The base link is 1, and
the outermost link or hand is 7. A coordinate system
is attached to each link for describing the relative ar-
rangements among the various links. The coordinate
system attached to the éth link is numbered i. More
details of the model are given in [14, 15]. The 4 x 4
transformation matrix relating ¢ + 1th coordinate sys-
Sk aic
i

tem to ith coordinate system is [14]:
Ci
L 8§ A —Cifli ;S
Ai= ( 0w Ai di ) ’
0 0 0 1

where s; = sinf;, ¢; = cosb;, K = siney, A; = cosay,
and 6; is the ith joint angle and o; is the #th twist
angle between the axes ith and i + 1. Moreover, a; is
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the length of link i + 1 and d; is the offset distance at
joint 2.

For a given robot with revolute joints we are given
the a;’s, d;’s, p;’s and A;’s. For the inverse kinematics
problem we are also given the pose of the end-effector,
attached to link 7. This pose is described with respect
to the base link or link 1. We represent this pose as:

;z Mz Nz Qx

= y My ny gy

Anand = I, m; ny g }°
V] 0 0 1

The problem of inverse kinematics corresponds to
computing the joint angles, 8, ,8;, 03, 64, 65 and 06 such

that
A142A3 A4 As A = Apang- (2)

The left hand side entries of the matrix equation given
above are functions of the sines and cosines of the
joint angles. Furthermore, this matrix equation corre-
sponds to 12 scalar equations. Since the matrix formed
by the first 3 rows and 3 columns of Apand is orthonor-
mal, only 6 of the 12 equations are independent. Thus,
the problem of inverse kinematics corresponds to solv-
ing 6 equations in 6 unknowns.

2.1 Raghavan and Roth Solution

In this section, we briefly describe the lower dimen-
sional approach of Raghavan and Roth [12] They re-
duce the multivariate system to a degree 16 polyno-
mial in tan(%), such that the joint angle 03 can be
computed from its roots. The other joint angles are
computed from substitution and solving for some in-
termediate equations.

Raghavan and Roth rearrange the matrix equa-
tion, (2), as

A3AgAs = A;lAl-lA,m,,dAgl. 3)

As a result the entries of the left hand side matrix are
unctions of s, 84 and 65 and the entries of the right

hand side matrix are functions of 61, 62 and 8. This
lowers their degrees and reduces the symbolic complex-
ity of the resulting expressions. The entries of columns
3 and 4 of the right hand side matrix in (3) are inde-
pendent of fs. As a result, comparing the entries of
the 3rd and 4th column results in 6 equations in 5
variables:

EQ1: c3f1 +83f2 = c2hy + s2hp — ag

EQ2: s3f1 = cafa = =X2(s2h1 — czh2) + pa(hs — da)
EQ3: fa = p2(s2hy — cohz) + Aa(ha — dy)

EQ4: €311 + 5372 = c2ny + s2ng (4)
EQ5: 8371 —cat3 = —A2(s2m3 — can2) + poma

EQ6: r3 = p3(s2my — can2) + Azna,

where f;’s, hi’s, r:’s and n;’s are functions of the
input variables [12]. The equations, EQ 1-EQ6 are re-
arranged, in terms of variables, to obtain 6 new equa-
tions, py,pa, ps,l1,ls,13 as functions of hi’s, fi's,ni’s
and r;’s. After the arrangement the left hand side of
p; and [; is a linear combination of 1, ¢y, s, ¢1,81,€1Ca,
€182, 51€2, 5152 and the right hand side is a linear com-
bination of 1, cs, 55, ¢4, 54, €4Cs5, €455, S$4C5, 5455. How-
ever, the coefficients used to express the right hand




side as a linear combination are functions of s3 and
C3.

Consider p = (p1 p2 p3)T andl= (I I Is)T as
3x 1 vectors. According to [12], the left and right hand
sides of the following equations have the same power
products as the left and right hand sides of p; and I;:

p-p. p-L pxl (p-p-2(-Dp. (5)
In all we get 14 equations and they can be expressed
as:
(Q) (3182 s1c2 c152 c1c2 81 €1 52 )’
(6)

where Q is a 14 x 8 matrix, whose entries are all con-
stants. Furthermore, these entries are obtained from
the left hand sides of p;’s, li’s and the equations (5).
P is a 14 x 9 matrix, whose entries are linear functions
of s3 and c3 and they are obtained from the right hand
sides of pi’s, l;’s and the equations, (5). The relation-
ship expressed in (6) helps us in eliminating four of

the five variables. L
Raghavan and Roth use 8 of the 14 equations in

(6) to eliminate the left hand side terms, expressed as
functions of 8; and f, in terms of the right hand side,
expressed as functions of 03, 84 and 0s. As a result,
they obtain the relation:

= (P) (8485 34C5 CaS5 C4C5 34 C4 S5 C5 )T,

(X) (455 845 435 C4C5 54 C4 85 C5 I)T =0, 7

where ¥ is 6 x 9 matrix, whose entries are linear com-
binations of s3, ¢s and 1. It is possible that Q’s rank is
less than 8. More details to handle such cases are given

in Section 3. Given (7), substitute s; = izf;-,-, ¢ =

i—;—%;-, for i = 3,4,5, where z; = tan(%‘). After the

substitution clear out the denominators and the sys-
tem of equations, (7) can, therefore, be expressed as:

z? x5 l)T =0, (8)

where (Z') is 6 x 9 matrix, whose entries are quadratic

polynomial in 3. The system given above is not a
square system and it is converted Into a square system
using dialytic elimination. In particular, the equations
expressed in (8) are multiplied by z4 to obtain a square
system of the form

’
= )(zizg T2Ts T3 T4TE TaTs T4

” T
) (zia:g 23zs 73 2352 Thos T] TATE TATs T4 z2 xy 1) ,
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where & is a 12 x 12 matrix of the form

" ¥ o
(7 8)

0 is 2 6 x 3 null matrix and the other entries of z”
quadratic polynomials in z3. Therefore, its determi-
nant is a polynomial of degree 24 in z3. Let us repre-
gent its determinant as R(z3).

Lemma I: (14 z3)* divides R(z3).
Proof: [12].

As a result, the degree 16 polynomial,

R(=3)

(142t ! (10)

Q(z3) =
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is the input—output polynomial, whose roots are used
to compute the joint angle 63. Raghavan and Roth
suggest expanding the determinant and use a root
solver for computing the values of 3. Given 3, they
usee the 11 linear independent equation in (9) to solve
for 04 and 5. Finally they use the equations, (6) and
(3) to solve for 61, 0 and 0.

2.2 Numerical Problems in the Ragha-
van and Roth Solution

Although Raghavan and Roth present a constructive
solution to the inverse kinematics problem, their algo-
rithm suffers from efficiency and numerical accuracy
problems. For example, the algebraic manipulations
in generating p1,p2,ps3,l1,l2,ls can introduce errors
due to floating point arithmetic. Furthermore, the de-
terminant expansion of %" can introduce significant
numerical errors such that (1 + 3)* may not exactly
divide the determinant. The symbolic expansion of
the determinant is relatively expensive for real time
performance. Finally, the computation of real roots of
polynomials of degree 16 can be ill conditioned [17].
The floating point errors accumulated in the interme-
diate steps of the computation, and therefore in the
coefficients of the degree 16 polynomial, can have a
significant impact on the accuracy of the roots of the
resulting polynomial.

3 Algorithm

In this section we describe our algorithm in detail. The
initial steps in our algorithm make use of the results
presented in [12]. However, we perform symbolic pre-
processing and make certain checks for condition num-
bers and degeneracy to improve the accuracy of the
overall algorithm . The overall algorithm proceeds in
the following manner:

1. Treat the a;’s, d;’s, Ai’s, pi’s and the entries of
the right hand side matrix Anand as symbolic con-
stants. As a result, express the entries of the 14x9
matrix P and 14 x 8 matrix @, as shown in equa-
tion (6), as functions of these symbolic constants.
This computation is performed using the proper-
ties highlighted in [12] and only once for general
6 R manipulators.

9. Given an instance of the problem, substitute the
numerical values of the symbolic constants high-
lighted above, to compute the numerical entries
of the matrices P and Q, as shown in (6), for this
instance. '

3. Compute the rank of @ using singular value de-
composition. If @ has rank 8 then this manipula-
tor can have up to 16 solutions for any pose of the
end—effector. However, the rank may be less than
8 and as a result we obtain an over—constrained
system. In this case the upper bound on the num-
ber of solutions may be less than 16. For example,
a PUMA manipulator has a total of at most 8 so-
lutions for any pose of the end—effector [14].



4. Eliminate the variables f; and 6, from (6). This
elimination is performed by computing a minor
of maximum rank of @ and using that minor to
represent ¢; and 6, as functions of §; and 65.

5. After eliminating 8; and f,, we obtain a matrix
%, as shown in (7). The actual number of rows in
X isequal to R = (14—rank(Q)) > 6. Take any of
the 6 rows of X (among R) and substitute for sines
and cosines of 03,04 and 05 in terms of z3,24 and
zs5, respectively. As a result, we obtain a matrix of
the form X', as shown in (8). After using dialytic
elimination we compute the 12 x 12 matrix, &,
whose entries are quadratic polynomial in z3.

6. Reduce the problem of computing roots of the
equation, determinant(Eu) = 0, to an eigenvalue
problem. The eigenvalues of the resulting 24 x 24
matrix correspond to the root zz and the corre-
sponding eigenvectors are used to compute the
values of z4 and z5. Substitute these relations in
(6) and (3) to compute the joint angles 6;, 8, and
9. The algorithm also involves clustering eigen-
values to accurately compute eigenvalues of mul-
tiplicity greater than one. Depending upon the
condition number of the matrices involved, the
problem may be reduced to a generalized eigen-
value problem.

7. Compute the condition number of the eigenvalue
computation. If the condition number is high,
improve the accuracy of the resulting solution by
Newton’s method.

These steps are explained in detail in the following
sections.

3.1 Symbolic Preprocessing

Many properties of the ideal generated by the equa-
tions, EQ1-EQS6, may not hold in practice due to float-
ing point arithmetic. As a result we treat the known
parameters of a 6R manipulator, the a;’s, d;’s, o;’s
and the entries of Apgna (like Iz, 1y, ¢, g ) as symbolic
constants. These symbolic constants a!iong with the
variables 6; are used in the symbolic derivation of the
equations highlighted in (5). We use the computer
algebra system, MAPLE, for the derivation and sim-
plification of the equations. The left and right hand
side of the 8 equations, shown in (5), are computed
separately. After computing the 14 equations, EQ1-
EQ6 and 8 equations shown in (5), collect the terms
as functions of sines and cosines of the joint angles 6;
and 0, for the left hand side of the equations and of
the joint angles 3,8, and 65 for the right hand side
of the equations. The coefficients of the equation are
used to compute the entries of the matrices P and Q.
As a result, we are able to express the entries of P and
@ as polynomial functions of the symbolic constants
a;’s, di’s, \i’s, pi’s, p,q,7,u,v,w. In case of P, each
entry is of the form fsin(63) + ycos(63) + 6, where 3, v
and § are functions of the symbolic constants.
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The matrix @ has a special structure. In partic-
ular many of its entries are zero and as a result the
system of equations, (6), can be expressed as two dif-
ferent system of equations of the form:

QW1 = (P1)(sass sacs cass cacs 34 ¢4 35 c5 )T, (11)
(Q2)W2 = (Pp)(sas5 sacs cass cacs 34 ¢4 35 c5 1)T (12)
where

w1 =(s1¢1), w2 ={(s152 s1¢p c152 c1eg 33 €2).

and Q1,Q3, P, P; are 6 x 2,8 x 6,6 x 9,8 x 9 matri-
ces, respectively. The details of this formulation are
given in [12]. In particular, we break the set of the 14
equations into sets of 6 and 8 equations. @1, Q2 are
minors of ) and P;, P, are minors of P.

The symbolic complexity of the entries of Py,
Py, Q1, Q3 corresponding to the equations p x p,
(p-p)1-2(p-Dpis high. Simplifying these entries sym-
bolically by collecting terms with common subexpres-
sions increases the efficiency and numerical accuracy
of subsequent computations.

3.2 Numerical Substitution and Rank
Computation

Given the Denavit-Hartenberg parameters of a ma-
nipulator, we substitute the a;’s, di’s, A\i’s and p;’s
into the functions used to represent the entries of
Py, Py, Q1,Q2. Although we have never encountered
numerical problems in substitution computations, the
accuracy of these operations can be improved by using
higher precision arithmetic. These substitutions are
performed only once for a given manipulator. Given
the pose of the end—effector, we substitute it to com-
pute the entries of Py, Py, Qy, Q4. Let the correspond-
ing numerical matrices (obtained after substitution)
be Pl) P27 QI)QZ'

We use singular value decomposition to compute
the ranks of @, and @, [6]. The singular vectors ob-
tained are also used to eliminate 6; and 0, from (11)
and (12). In particular, let the singular value decom-
position of @; be expressed as:

-_— P 1 T
Q=UzV |

where U, %" and V'" are 6 x 2,2x2and 2 x2
matrices, respectively. Initially compute the singular

values, 1,02 of Q;. If both the singular values are

non-zero, Q; has full rank and let EI = Q. If either

of the singular values is close to 0.0, we conclude that
Q1 does not have full rank. In this case we represent

a:—:{ g"

where ¢ is a user defined constant to test the rank
deficiency of the matrix. Furthermore, ¢ is a function
of the accuracy of the input data. Compute the new

matrix 61, whose (%, §) element is given as:

o> ¢
o <e€

— .
Ql.‘j =i 0k Uik Vii.




—

@, has the property that a small perturbation does
not decrease the rank of the matrix. It turns out that
this property has significant impact on the accuracy
of the rest of the algorithm. Use Q, for eliminating
61,0 in the system of equations (11) to obtain

(Q'l)(sl cl)T = (P1) (5455 34C5 C455 C4C5 84 C4 S5 65)T. (13)
Perform Gauss elimination with complete pivoting on

Q, and corresponding row and column operations are
carried on to the elements of P. Depending on the

rank of @, whether 0,1 or 2, we obtain 6, 5 or 4 equa-
tions, respectively, in sines and cosines of 84,05. Each
equation corresponds to a row of ¥ in (7).

In a similar fashion we compute the rank of @5, as
represented in (12). Let the modified matrix computed

after singular value decomposition be Q,. It is used in
eliminating 61,02 from (12). Depending on the rank

i
of @,, we may obtain anywhere from 2 to 8 equations
after elimination. Each equation corresponds to a row
of & in (7).

The matrix ¥ is a p x 9 matrix, where 6 < p < 14.
Furthermore each entry is a function of sin(f3) and
cos(f3). We choose any 6 of the p rows and break up
the resulting matrix into X, and X consisting of 6 and
p — 6 rows, respectively. The algorithm finds the so-
Jutions of the equations corresponding to X1 and back
substitutes the solution into equations corresponding
to Ty. As aresult, we solve for the system of equations
represented by X.

Given the 6 x 9 matrix 1, we substitute the sines
and cosines of 83, 04, 05 in terms of 3, z4 and z5, per-
form dialytic elimination and obtain a 12 x 12 matrix,

E”, whose entries are quadratic polynomials in z3.

3.3 Reduction to Eigenvalue Problem

In this section, we reduce the problem of root finding
to an eigenvalue problem. Moreover, we exploit the
structure of the resulting matrix for the eigenvalue al-
gorithm.

Given the 12 x 12 matrix, £", each of its entries is
a quadratic polynomial in z3. The problem has been
reduced to solving the system of linear equations

" " T
T v=X (zix?, z3zs =3 P z3zs z2 T4TE T4T5 T4 zg z5 1)14)

= (000000000000)7.

We express the matrix as

v = Az? + Bz3 +C, (15)

where A, B and C are 12 x 12 matrices consisting of
numerical entries and compute the condition number
of A. The actual computation of a condition takes

O(n®) time. However, good estimators of complexity
O(n?) are available and are available in LINPACK and
LAPACK [2]. If the matrix is singular, its condition
number is infinity. Lets consider the case when A is
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well conditioned. Multiply the matrix equation, (15),
A1 to obtain:

T = I + A" Bas + AIC,
where I is a 12 x 12 identity matrix. Given T , we
use Theorem 1.1 [5] to construct a 24 x 24 matrix M

of the form
0 I
M=( —A-1C -A7'B )

where 0, I are 12 x 12 null and identity matrices, re-
spectively. It follows from the structure of M that
the eigenvalues of M correspond exactly to the roots
of determinant(X ) = 0. Furthermore, the eigenvec-
tors of M, corresponding to the eigenvalue z3 have the

structure
v=( Y
~\ z3v )’

where v is the 12 x 1 vector corresponding to the
variables in (14). Thus, the eigenvectors of M can be
used to compute z4 and zs.

We now consider the case, when A in (15) is ill-
conditioned. One example of such a case occurs, when
one of the solution of inverse kinematics has 3 ~ 180.
As a result, 23 = tan(%i) ~ 0o and A is almost singu-
lar. The matrix equation, (15), is reduced to a general-
ized eigenvalue problem by constructing two matrices,

M1 and M2
I o 0 I
M1=(0 A)1M2=(_C _B):
where 0,1 are 12 x 12 null and identity matri-
ces, respectively [5, 6]. Furthermore, the roots of

determinant(E") = 0, correspond to the eigenvalues
of the generalized eigenvalue problem M; — z3M; [5].
The eigenvectors have the same structure as (16).
Computing the eigendecomposition of a general-
ized eigenvalue problem is costlier than the eigenvalue
problem by a factor of 2.5 to 3. In most cases, we can
perform a linear transformation and reduce the prob-
lem to an eigenvalue problem. In particular, we per-

form a transformation of the form z3 = f_f.:fli_'—:, where

a, b, c, d are random numbers. As a result of this trans-
formation, the resulting matrix polynomial is:

(16)

3y = Az2 + B53 + C, 17)
where 4 = ¢ A+ac B+¢* C, B = 2abA + (ad +
bc)B + 2¢dC and C = b?A + bdB + d’C. For most
cases A is well conditioned. The only exceptions arise
when A, B,C may have common singular pencils. In
th?} lat(li;er case, A is ill conditioned for all choices of
a! ’c’ .

We suggest trying this transformation for a few
choices of a,b,¢c,d and compute the condition num-
ber of A. The cost of estimating condition number
is rather small as compared to computing the eigen-
decomposition. If 4 is well conditioned, we solve for
determinant(X;) = 0 by reducing it to an eigenvalue
problem. Given T3, apply the inverse transformation
to compute z3. The eigenvectors have the same struc-
ture as (16), except that z3 is replaced by T3.



4 Implementation

We have implemented the algorithm on an IBM
RS/6000. We have used many routines from EIS-
PACK and LAPACK for matrix operations. These
routines are available in Fortran and we interfaced
them with our C programs. Many of the algorithms
for matrix computations have been specialized to our
application. The details are given below.

4.1 Eigendecomposition

In the previous section we reduced the problem of root
finding to an eigenvalue problem. The 24 x 24 ma-
trix, M, has 24 eigenvalues. However, according to
Lemma I, 8 of the eigenvalues correspond to the roots
of the polynomial (1 + 232)* = 0. In other words, ¢
and —¢ are eigenvalues of M of multiplicity 4 each,
where ¢ = \/—1. If we transform the variable z3, these
eigenvalues are suitably modified.

The QR algorithm for eigenvalue computation
transforms M into a Hessenberg matrix by a series of
orthogonal symmetric transformations [6]. The rest of
the algorithm consists of performing orthogonal sym-
metric transformations such that the matrix reduces to
its real Schur form. These transformations correspond
to choosing shifts and computing the QR decomposi-
tion of the resulting matrix. More details are given
in [6]. Since we know 8 of the eigenvalues apriori, we
perform the shifts corresponding to these eigenvalues.
As the complex eigenvalues occur in conjugates, the
shifts can be performed using real arithmetic (termed
as a double shift). As a result, after 4 double shifts, we
obtain a 16 x 16 Hessenberg matrix. The eigenvalues
of the latter matrix correspond exactly to the roots of
Q(x3) in (10).

Given the real Schur form we are only interested
in computing the eigenvectors corresponding to real
eigenvalues. These eigenvalues can be easily identified
by 1 x 1 diagonal matrices R;;. To account for nu-
merical errors, we test whether the imaginary part of
the eigenvalue is less than e. For such eigenvalues, we
set the imaginary part equal to zero and it becomes
a real eigenvalue of multiplicity two. In other words,
the 2 x 2 matrix, R;; corresponding to the complex
eigenvalues is converted into a diagonal matrix.

4.1.1 Clustering Eigenvalues

In many instances the solution has a root of multi-
plicity greater than one. As such the problem of com-
puting multiple roots can be ill-conditioned. In other
words the condition numbers for such eigenvalues can
be high and the solution therefore, is not accurate.
In most instances of the problem, we have noticed
that there is a symmetric perturbation in the multiple
roots. For example, let 3 = o be a root of multiplicity
k of the given equation. The floating point errors cause
the roots to be perturbed and the algorithm computes
k different roots ai,...,ar. Moreover, | a — aj |
may be relatively high. Let o, = 21t< Ttk Tt
turns out | & — oy, | is relatively small and oy, is very
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close to the multiple roots. We can actually verify
the accuracy of these computations by computing the
condition number of the eigenvalue and the condition
number of a cluster of eigenvalues. The eigendecom-
position routines in LAPACK have implementation of
these condition numbers.

4.1.2 Eigenvector computation

The eigenvector corresponding to a real eigenvalue is
computed by solving a quasi—upper triangular system
[6]. Given an eigenvector V, we use its structure,
(16), to accurately compute z4 and z5 from it. How-
ever, due to floating point errors each component of
the eigenvector undergoes a slight perturbation. Each
term of the vector has the same bound on the max-
imum error occurred due to perturbation [18]. As a
result, terms of maximum magnitude have the mini-
mum amount of relative error. We use this property in
accurate computation of 24 and z5. Given the eigen-
vector V| let
v
vi= { z3v l

Thus, v; corresponds to elements of V, whose relative
error 1s low. z4 and z5 can be computed from v; by
solving for

r3 |Sl
1:3|>1

T
V1 = (v1 v2 v3 vg vs vg U7 Vs V9 V10 V17 V1)

T
(zirg 212.1:5 :vi ziz'g zi:vg) xf zg:g T4Ty T4 xg 5 1) .

Therefore, 4 and x5 corresponds to ratio of two terms
of vy. Initially, we decide whether | z4 [> 1or | 24 |< 1
by comparing the magnitude of v; and v,. A similar
computation is performed for determining the mag-
nitude of z5. Depending upon their magnitudes, we
tend to use terms of maximum magnitude such that
their ratios correspond to z4 and z5. As a result we
minimize the error.

4.1.3 Computing all Joint Angles

Given a triple (z3, z4,z5) corresponding to a solution
of the 6 equations represented as the 6 x 9 matrix
1. We substitute these solutions into the equation
corresponding to the matrix $y. The triple is classified
as a solution of the original system if it satisfies all the
equations obtained after eliminating 6; and 6,. These
equations are represented by the matrix X.

Given a solution of X, solve for 51, ¢y, 59, ¢p from
Q; and @Q,, as shown in (13). These solutions are
substituted into (3) to compute .

4.2 Improving the Accuracy

The solution obtained above are back substituted into
the equations EQ1-EQ6, (4). The residues obtained
are used to check the accuracy of the given solutions.
To improve the accuracy we use Newton’s method. If
the given solution has multiplicity one, the residual
quickly converges to zero.

We apply the Newton’s method on the equations.
We represent each equation in terms of z;, where

T = tan(%i). As a result each equation is quadratic




polynomial in z;. The solution computed from the al-
gorithm highlighted above is used as the initial guess.
At each step we evaluate the functions and compute
the Jacobian. This process is repeated till the residual
is almost zero.

4.3 Performance

We have applied our algorithm to many examples. In
particular, we used it on 21 problem instances given
in [16] and verified the accuracy of our algorithm. All
these problems can be accurately solved using double
precision arithmetic. In many cases we are able to
compute solutions up to 11 — 12 digits of accuracy.

For most problems, the algorithm takes about 11
milliseconds on an average on an IBM RS/6000. The
actual time varies between 9.5 milliseconds to 14 mil-
liseconds. About 75 — 80% of the time is spent in
the QR algorithms for computing the eigendecompo-
sition. Thus, better algorithms and implementations
for eigendecomposition can improve the running time
even further.

In a few cases the algorithm takes as much as 25
milliseconds on the IBM RS/6000. In these instances
the matrices A, B,C in (15{ are ill-conditioned and
have singular pencils. As a result we reduce the re-
sulting problem to a generalized eigenvalue problem,
which slows down the algorithm.

5 Conclusions

In this paper we have presented a real time algorithm
for the inverse kinematics of general 6 R robot manip-
ulators. In the process we used symbolic techniques,
matrix computations and numerical methods. We be-
lieve that this algorithm gives us a level of performance
expected of industrial manipulators. More details of
the algorithm are given in [8].
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