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Abstract. We propose a compact formula for the mixed resultant of a
system of n+1 sparse Laurent polynomials in n variables. Our approach is
conceptually simple and geometric, in that it applies a mixed subdivision
to the Minkowski Sum of the input Newton polytopes. It constructs a
matrix whose determinant is a non-zero multiple of the resultant so that
the latter can be de�ned as the GCD of n + 1 such determinants. For
any specialization of the coe�cients there are two methods which use one
extra perturbation variable and return the resultant. Our algorithm is the
�rst to present a determinantal formula for arbitrary systems; moreover,
its complexity for unmixed systems is polynomial in the resultant degree.
Further empirical results suggest that this is the most e�cient method
to date for sparse elimination.

1 Introduction

We are given n + 1 polynomials f1; : : : ; fn+1 2 C[x1; : : : ; xn] and we seek a
condition on the coe�cients of the fi that indicates when the system has a
solution. Sparsity implies that only certain monomials have non-zero coe�cients
in the fi. Such systems may have trivial solutions with some xi = 0 for all
coe�cient specializations, so we concentrate on solutions x = � with � 2 (C�)n,
where C� = C�f0g. Under this assumption, we can deal with the more general
case of fi's which are Laurent polynomials in C[x1; x

�1
1 ; : : : ; xn; x

�1
n ].

We use xe to denote the monomial xe11 � � �xenn , where e = (e1; : : : ; en) 2 ZZ
n

is a multi-exponent. Let Ai = fai1; : : : ; aimi
g � ZZ

n denote the set of exponents
occurring in fi, then

fi =
miX
j=1

cijx
aij ; for i = 1; : : : ; n+ 1 ; (1)

and we suppose cij 6= 0 so that Ai is uniquely de�ned given fi.

De�nition1. The �nite set Ai � ZZ
n of all monomial exponents appearing in

fi is the support of fi. The Newton Polytope of fi is Qi = Conv(Ai) � IRn, the
convex hull of Ai.
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A polynomial system is unmixed if all supports Ai are the same for i = 1; : : : ; n+
1, otherwise it is mixed.

De�nition2. The Minkowski Sum A+ B of convex polytopes A and B in IRn

is the set

A +B = fa+ bja 2 A; b 2 Bg :

A+B is a convex polytope. Let Vol(A) denote the usual n-dimensional volume
of A.

De�nition3. Given convex polytopes A1; : : : ; An � IRn, there is a unique real-
valued function MV (A1; : : : ; An) called the Mixed Volume which is multilinear
with respect to Minkowski sum, such that MV (A1; : : : ; A1) = n!Vol(A1). Equiv-
alently, if �1; : : : ; �n are scalars, then MV (A1; : : : ; An) is precisely the coe�cient
of �1�2 � � ��n in Vol(�1A1+ � � �+�nAn) expanded as a polynomial in �1; : : : ; �n.

The Newton polytopes o�er a convenient model for the sparsity of a poly-
nomial system, in light of the following upper bound on the number of common
roots, see [1], [11], [9].

Theorem4. [1] Let f1; : : : ; fn 2 C[x1; x�1; : : : ; xn; x
�1
n ]. The number of com-

mon zeros in (C�)n is either in�nite, or does not exceed MV (Q1; : : : ; Qn). For
almost all specialization of the coe�cients cij the number of solutions is exactly
MV (Q1; : : : ; Qn).

For systems of n + 1 polynomials in n unknowns, there are generically no so-
lutions, and the resultant delimits those systems that do have a solution. We
adopt the following de�nition for the sparse resultant from [15]; it is identical to
the (A1; : : : ;An+1)-resultant of [4]. Regard a polynomial fi as a generic point
(ci1; : : : ; cimi

) 2 IPmi in the space of all possible polynomials with the given set
of exponents Ai, after identifying scalar multiples. Then the input system is a
point c = (c11; : : : ; c1m1

; : : : ; c(n+1)1; : : : ; c(n+1)mn+1
) in IPm1�1�� � �� IPmn+1�1.

Let Z0 = Z0(A1; : : : ;An+1) be the set of all points c such that the system has a
solution in (C�)n, and let Z = Z(A1; : : : ;An+1) denote the (Zariski) closure of
Z0 in the product of projective spaces. Z is an irreducible algebraic set.

De�nition5. The sparse resultant R(A1; : : : ;An+1) of the system (1) is an irre-
ducible polynomial in ZZ[c]. If codim(Z) = 1 then R(A1; : : : ;An+1) is the de�ning
polynomial of the hypersurface Z. If codim(Z) > 1 then R(A1; : : : ;An+1) = 1.

Throughout this article, it is assumed without loss of generality that the
a�ne lattice generated by

Pn+1
i=1 Ai is n-dimensional. Moreover, this lattice is

identi�ed with ZZ
n after a change of variables, if necessary [21]. Then,

Proposition6. [15] The sparse resultant is separately homogeneous in the co-
e�cients (ci1; : : : ; cimi

) of each fi and its degree in these coe�cients equals the
mixed volume of the other n Newton polytopesMV (Q1; : : : ; Qi�1; Qi+1; : : : ; Qn+1).



This implies that the total degree degR of the resultant equals the sum of all
n+ 1 n-fold Mixed Volumes.

The practical signi�cance of this approach relies on the fact that polynomial
systems are frequently sparse in several applications such as computer vision,
robot kinematics, graphics and geometric modeling. More precise examples in-
clude the cyclic n-roots problem, computing the motion from point matches and
inverse kinematics. For the later problem, the homogeneous approach leads to
an intractable problem, while the custom approach of [14] requires time in the
order of milliseconds.

The following section points to previous works on which our approach is
based and brie
y states our results. Section 3 describes the construction of a
matrix M of the correct degree in the coe�cients of f1. Section 4 proves that
det(M ) is a multiple of the sparse resultant and is not identically zero. Section 5
shows that the resultant is the Greatest Common Divisor (GCD) of n+ 1 such
determinants and sketches two ways to compute it for various specializations. We
illustrate the algorithm with an example in Sect. 6 and analyze its complexity
in Sect. 7. The article concludes with some open questions.

2 Background and the Present Approach

Our approach consists of regarding the coe�cients cij as indeterminates and ex-
pressing the sparse resultant through various determinants in these coe�cients.
We shall de�ne the resultant as the GCD of n + 1 such determinants, each of
which is a multiple of the resultant and may be thought of as a generalized inertia
form [23]; Hurwitz showed for the general homogeneous case that the resultant
is the GCD of all inertia forms [6]. Alternatively, we may compute the resultant
via a series of n divisions of determinants, similarly to Cayley's method [16].
Lastly, our construction is closely related to that of Macauley's [13].

More recently, the sparse unmixed resultant was de�ned as the Chow form
of a projective toric variety in [10], see also [4]. Algorithms for its computation
and evaluation were proposed in [20], the most e�cient one having complexity
higher than polynomial in the degree of the resultant and exponential in n with
a quadratic exponent.

Formultigraded systems, an optimal determinantal formula, called of Sylvester
type, is given in [22], These systems are unmixed and include polynomials that
are homogeneous of degree dj in each group of variables xj , where xj has lj + 1
variables. The main theorem de�nes a matrix whose determinant is the resultant
for such a system, provided that for each j, lj = 1 or dj = 1.

An explicit formula for the sparse resultant was given in [15] as a Poisson
product R0

Q
�2V (f1;:::;fn)

fn+1(�) where R0 is a rational function in the coe�-
cients of f1; : : : ; fn.

Our algorithm requires two randomized steps, the success of which has arbi-
trarily high probability and can be veri�ed deterministically. The running time
for unmixed systems is given in the following restatement of Theorem 24, which
makes the algorithm the most e�cient to date for this case.



Theorem7. Assume that our algorithm executes on an arbitrary unmixed sys-
tem. Then its asymptotic bit complexity, if we omit logarithmic factors, is poly-
nomial in maxifmig and the total degree of the resultant and exponential in n
with a linear exponent.

Furthermore, this is the �rst algorithm that produces a determinantal for-
mula for mixed systems. Although a similar complexity bound as above is not
possible in this case, empirical results and a heuristic analysis imply that, for
most mixed systems in practice, the algorithm's complexity is given by the above
theorem.

3 Matrix Construction

We de�ne and analyze the properties of matrixM associated with the polynomial
f1. Let Q denote the Minkowski Sum of all input Newton polytopes

Q = Q1 +Q2 + � � �+ Qn+1 � IRn :

If we de�ne an (n+ 1)-argument vector sum

� : (IRn)(n+1) ! IRn : (p1; : : : ; pn+1) 7! p1 + � � �+ pn+1 ;

then Q may be thought of as the image of Q1 � � � � � Qn+1 under �. This
is clearly a many-to-one mapping; to de�ne a unique inverse (p1; : : : ; pn+1) in
��1(q)\Q1�� � ��Qn+1, for each q 2 Q, a method from [21] and [2] is employed.
Choose n + 1 su�ciently generic linear forms l1; : : : ; ln+1 2 ZZ[x1; : : : ; xn] and
de�ne, for 1 � i � n+ 1, lifted Newton polytopes

Q̂i
4
= f(pi; li(pi)) : pi 2 Qig � IRn+1 :

Let the Minkowski Sum of the lifted Newton polytopes be

Q̂ = Q̂1 + � � �+ Q̂n+1 � IRn+1 :

We make use of

De�nition8. Given a convex polytope in IRn+1, its lower envelope with respect
to vector v 2 IRn+1 is the closure of the subset of all points r on its surface such
that, given a point z at in�nity in the direction of v, the segment (r; z) intersects
the polytope at a point other than r.

Let � : IRn+1 ! IRn denote projection on the �rst n coordinates, and h :
IRn+1 ! IR denote projection on the (n+1)-st. Now consider the lower envelope
of Q̂ with respect to (0; : : : ; 0; 1) and let s : IRn ! IRn+1 map each point in Q
to the point on this envelope that lies in ��1(q). Equivalently

s(q) = q̂ 2 ��1(q) \ Q̂ ; such that h(q̂) is minimized :



The lower envelope of Q̂ is then s(Q). By construction the li's are generic enough
so that every point q̂ on the lower envelope can be uniquely expressed as a sum
of points q̂1 + � � �+ q̂n+1 with q̂i 2 Q̂i. This is implemented by picking, for each
i, a random integer vector with independent entries whose bit size is log c, for
some constant c > 1. Then the probability that the genericity condition fails is
bounded by 1=c [17, Lemma 1].

Let �̂ denote the natural (coarsest) polyhedral subdivision of the lower enve-
lope of Q̂. Each facet (n-dimensional face) of �̂ is a Minkowski sum F̂1+� � �+F̂n+1

with F̂i a face of Q̂i, and since lower envelope points have unique expressions as
sums,

n+1X
i=1

dim(F̂i) = n :

The image of �̂ under � induces a polyhedral subdivision � of Q whose cells are
of the form F1+ � � �+Fn+1 with the same dimension property, a consequence of
which is the following

Remark. For every cell F1+ � � �+Fn+1 in �, Fi a face of Qi, at least one of the
Fi is zero-dimensional, i.e. a vertex.

De�nition9. A mixed cell of the induced subdivision is a cell which is a sum
F1+ � � �+Fn+1 where exactly one Fi is a vertex. Thus the remaining Fj for j 6= i
are edges.

For selecting the matrix entries in a well-de�ned manner, we must perturb
the Minkowski sum slightly so that each integer lattice point lies in the interior
of a cell of �. Thus we choose a su�ciently small generic vector � 2 Qn, and the
set of exponents that indexes the rows and columns of M is

E = ZZ
n \ (� + Q) :

If �� denotes the subdivision obtained by shifting all faces of � by �, the choice
of � is satisfactory if every p 2 E lies in the interior of a cell of ��. We can now
de�ne our selection rule for elements of M based on a function RC : E ! ZZ

2,
for row content.

De�nition10. (Row content function) Let p 2 E lie in the interior of a cell
� + F1 + � � �+ Fn+1 of ��. Let i be the largest integer such that Fi is a vertex,
so Fi = aij for some j. Then RC(p) = (i; j).

The row ofM indexed by p 2 E contains the coe�cients of fi, and represents
a multiple of fi which is

x(p�aij )fi (2)

where (i; j) = RC(p). Let jEj denote the cardinality of set E ; then,



De�nition11. M is an jEj � jEj matrix whose rows and columns are indexed
by elements of E , and whose element at row p and column q is as below, for
arbitrary p; q 2 E with RC(p) = (i; j):

Mpq =

(
cik if q � p+ aij = aik for some k ;

0 if q � p+ aij 62 Ai :

Therefore Mpp = cij where (i; j) = RC(p). The matrix is well-de�ned since it is
easily seen that all exponent vectors p� aij + aik for aik 2 Ai lie within E ; this
is also implied by the discussion in the next section.

4 A Nonzero Multiple of the Resultant

First we prove that the determinant of M is a multiple of the resultant. M
represents a linear map CjEj ! CjEj which we can interpret as the map taking
the vector of coe�cients of (g1; : : : ; gn+1) to the vector of coe�cients of g, where

g = g1f1 + � � �+ gn+1fn+1 (3)

and the support of g is E ; in addition, the support of gi is fp�aij j p 2 E ; RC(p) =
(i; j)g. Thus jEj is the total number of non-zero coe�cients in the gi's.

Lemma12. If there exists � 2 (C�)n such that f1(�) = � � � = fn+1(�) = 0, then
det(M ) = 0.

Proof. Assume that M is non-singular. Then the linear map de�ned by M is
surjective and we can choose polynomials g1; : : : ; gn+1 such that g in (3) is a
monomial. This monomial must be zero at every solution �, which is infeasible
for � 2 (C�)n. Hence there can be no solution in (C�)n, which is a contradiction.

ut

Proposition13. The sparse resultant divides the determinant of M .

Proof. The lemma implies that det(M ) = 0 on the set Z0 of specializations of
cij such that the system has a solution in (C�)n. Thus it is zero on the closure
Z of Z0, which is exactly the zero set of the resultant R(A1; : : : ;An+1). Since
the resultant is irreducible it must divide det(M ). ut

To alleviate the possibility that det(M ) is identically zero, we show that
under the following specialization of the coe�cients cij, det(M ) 6= 0:

cij 7! tli(aij)

so that each cij becomes an integral power of t where t is a new indetermi-
nate. Observe that the Newton polytope of the specialized fi as a polynomial
in C[x1; : : : ; xn; t] is precisely Q̂i. Let M (t) denote the matrix M under this
specialization, and det(M )(t) denote its determinant, which is a polynomial in
t with integer coe�cients.



Theorem14. The lowest degree term of det(M )(t) is the product of leading
diagonal elements of M (t). That is, it has coe�cient 1 and (integer) exponentX

p2E

li(aij)

where for each p, (i; j) = RC(p). Therefore this determinant is non-vanishing.

This theorem follows from the following series of lemmas.

Lemma15 (Geometric). Let p̂ be a point in the interior of some facet of
the subdivision �̂ of the lower envelope s(Q). By construction, p̂ has a unique
expression as a sum of points from Q̂1; : : : ; Q̂n+1, and one of these is a vertex
âij = (aij; li(aij)). Then (p̂� âij + Q̂i) \ s(Q) = p̂.

Proof. It su�ces to show that every other point q̂ 2 p̂� âij + Q̂i lies above the

lower envelope. It is easy to see that p̂ � âij + Q̂i is contained in Q̂, because it
consists of sums of (n+1)-tuples of points, one from each polytope. So all points
in it are either on or above the lower envelope.

Now displace both p̂ and q̂ by decreasing their (n + 1)-st coordinate by the
same amount, thus de�ning points p̂0; q̂0 2 IRn+1. The displacement should be
small enough so that the line (p̂0; q̂0) intersects the lower envelope in the face
that contains p̂. Let p̂00 be this intersection point. Q̂ also contains p̂00� âij + Q̂i.

Clearly (Fig. 1) the vector q̂0 � p̂00 is smaller than q̂ � p̂ and in the same
direction. Now q̂ � p̂ is contained in the convex set Q̂i � âij, and it follows

that q̂0 � p̂00 is also contained in Q̂i � âij (which contains the origin). Thus

q̂0 2p̂00� âij+Q̂i �Q̂. So we have demonstrated a point q̂0 such that �(q̂) = �(q̂0)
but h(q̂0) < h(q̂). Thus q̂ is not on the lower envelope. ut

p’’

p

p’

q

q’^

^
^

^

^

Fig. 1. Proof of the geometric lemma

De�ne a matrix M 0(t) by scaling the rows of M (t):

M 0
pq

4
= t(h(p̂)�li(aij ))Mpq

for every q 2 E ; where (i; j) = RC(p) and p̂ = s(p). Then the previous lemma
leads to an inequality on the degree in t of the M 0 entries.



Lemma16. For all non-zero elements M 0
pq with p 6= q, deg(M 0

pq) > deg(M 0
qq).

Proof. Let p̂ and q̂0 be the points on the lower envelope s(Q) + � such that
�(p̂) = p and �(q̂0) = q. Let (�; 
) = RC(q) and, since deg(Mqq(t)) = l�(a�
), we
have

deg(M 0
qq(t)) = (h(q̂0)� li(aij)) + li(aij) = h(q̂0) :

Note that p̂ will lie in the interior of a facet of �̂�. Let q̂ be the intersection
��1(q) \ (p̂ � âij + Q̂i). The intersection is non-empty because if Mpq contains
a non-zero coe�cient cik, then q = p� aij + aik. In fact q̂ = p̂� âij + âik, hence

deg(M 0
pq(t)) = h(p̂) � li(aij) + li(aik) = h(q̂) :

From the previous lemma q̂ does not lie on the lower envelope and since q̂0 does
lie on the lower envelope, we have h(q̂) > h(q̂0). ut

The previous lemmas are more easily understood by recalling that the Q̂i's are
the Newton polytopes of the specialized system, where t is the (n+1)-st variable.
More precisely, the Newton polytope of the polynomial in row p is Q̂i shifted so
that its vertex âij lies over p. The row-scaling of M by powers of t corresponds
to lifting the Newton polytopes of the rows so that the optimal vertex touches
the lower envelope. The rest of the polytope will lie above the lower envelope.
Looking down column q of M 0 corresponds to looking at points in the various
Newton polytopes that lie over the lattice point q. There will be a unique point
of minimum (n + 1)-st coordinate on the lower envelope over q corresponding
to the leading diagonal element M 0

qq . All other points will have larger (n+ 1)-st
coordinate, therefore the corresponding entries have higher degree in t than that
of M 0

qq .

Proposition17. The lowest-degree term of det(M 0)(t) equals the product of the
leading diagonal elements of M 0(t), therefore this determinant is non-vanishing.

Proof. The determinant can be written

det(M 0) =
X

�2S(E)

(�1)sign(�)
Y
q2E

M 0
�(q)q

where S(E) is the symmetric group on E . For every � not equal to the identity,
we have �(q) 6= q for some q, so deg(M 0

�(q)q) > deg(M 0
qq) by the previous lemma.

Thus
deg(

Y
q2E

M 0
qq) < deg(

Y
q2E

M 0
�(q)q)

for every permutation � other than the identity. This implies that the product of
leading diagonal entries is a unique lowest power of t and therefore there exists
some value t0 6= 0 of t for which this product is not canceled and det(M 0)(t0) 6= 0.

ut

The main result (Theorem 14) of this section is a straightforward consequence
of this proposition by observing that

det(M 0)(t) = t� det(M )(t)

where t� is the product of the scale factors.



5 Computing the Resultant

We show that the degree of det(M ) in the coe�cients of the polynomial f1 equals
that of the resultant R. The row content function chooses f1 if there is no other
possibility, which happens precisely at the mixed cells to which Q1 contributes
a vertex. The total volume of these cells equals the mixed volume of the other
n Newton polytopes MV (Q2; : : : ; Qn+1). We de�ne an n-dimensional half-open
integral parallelotope HO:

HO = f

nX
i=1

riei j ri 2 [0; 1); ei 2 ZZ
ng :

Lemma18. The number of integer lattice points in a half-open integral paral-
lelotope equals its volume.

Proof. It follows from [18, Remark, p.335] that the number of these lattice points
is n!Vol(S) where S is the simplex Conv(0; e1; : : : ; en). The volume of the par-
allelotope HO is also n!Vol(S). ut

Corollary19. For any � 2 IRn, the number of integer lattice points in HO+ �
is Vol(HO).

Proof. Imagine that HO is displaced by t� as t varies from 0 to 1. Observe that
for each facet of HO that is open (or closed) the opposite facet is closed (open),
and that the opposite facet is displaced from the �rst by an integral vector
v. Thus as HO moves, whenever a lattice point p enters HO, a corresponding
point at p+v exits, and vice versa. Thus the number of lattice points inside HO
remains constant. ut

A mixed facet of the subdivision �̂� is the Minkowski sum of n edges, hence
a parallelotope in IRn. The perturbation by � guarantees that all lattice points
lie in the interior of a facet. So the number of rows containing coe�cients of f1
is precisely MV (Q2; : : : ; Qn+1).

Proposition20. The degree of the determinant of M in the coe�cients of f1
equals MV (Q2; : : : ; Qn+1), which equals that of R(A1; : : : ; An+1). Moreover, the
degree of det(M ) in the coe�cients of every other fj for j 6= 1 is at least as large
as the respective degree of R(A1; : : : ;An+1).

For computingR we could use Hurwitz's idea [6] and construct n+1 matrices,
M1; : : : ;Mn+1, where each Mi has the minimum number of rows containing
coe�cients of fi. For example, we could modify the row contents function so
that it never returns i when there is another choice. Let D1; : : : ; Dn+1 be the
determinants formed in this way. The GCD of D1; : : : ; Dn+1 has the correct
degree in all fi's and, since the GCD is divisible by R, it equals R. Unfortunately,
this method does not work when the coe�cients of the fi are specialized. It can
be used after a suitable perturbation of the specialized system, but there is
a more economical method, essentially the one in [3], with a straightforward
adaptation; two variants follow.



5.1 Division Method

Let g1; : : : ;gn+1 be the specialized polynomials. First we choose polynomials
h1; : : : ; hn+1 with random integer coe�cients, such that hi has support Ai.
Then the perturbed system is

(f1; : : : ; fn+1) 7! (g1 + u1h1; : : : ; gn+1 + un+1hn+1)

where each ui is a new indeterminate. De�ne the extraneous factor bi of each Di

via
Di = biR

and notice that bi will be independent of ui.

De�nition21. Suppose a polynomial A(u1; : : : ; un+1) has maximum degree di
in ui. Then A is said to be rectangular if it contains a monomial of the form

ud11 ud22 � � �u
dn+1
n+1 .

Under the specialization above, note that R as well as D1; : : : ; Dn+1 will be

rectangular, because the coe�cient of ud11 ud22 � � �u
dn+1
n+1 will be the resultant (or

one of the determinants) when each fi is specialized to hi.
De�ne R(j)(u1; : : : ; uj) to be the leading coe�cient, with respect to total de-

gree, of R considered as a polynomial in uj+1; : : : ; un+1. De�ne D
(j)
i (u1; : : : ; uj)

and b(j)i (u1; : : : ; uj) analogously and notice that all these polynomials are rectan-

gular. ThenD
(j)
i = b

(j)
i R(j) for all i and j. But notice that since bi is independent

of ui, b
(i)
i = b

(i�1)
i , which we can use to eliminate bi:

R(i) =
D

(i)
i

D
(i�1)
i

R(i�1) : (4)

Now notice that R(n+1) is exactly the resultant of the fi, so setting u1 = � � � =
un+1 = 0 in R(n+1) will give the resultant of the gi.

The recurrence (4) has initial term R(0) which is some integer that we may
set to 1, thus obtaining R(n+1) equal to a scalar multiple of the resultant.

Next observe that the identity (4) is valid for specializations of ui's so long
as no denominator vanishes. So we take u1 = u2 = � � � = un+1 = u, so that all

the D
(j)
i 's become univariate polynomials in u. Since they are all rectangular,

they have a unique term of highest total degree in the ui's which cannot cancel,

so none of them will vanish under this specialization. Each D
(j)
i (u) is easily seen

to be the determinant of M under the specialization:

(f1; : : : ; fn+1) 7! (g1 + uh1; : : : ; gj + uhj; hj+1; : : : ; hn+1)

and the leading coe�cient of D(j)
i is once again non-zero for almost all choices of

hi's. Thus we have an almost guaranteed method of constructing the resultant at
the cost of adding the single variable u. More precisely, to bound the probability
of failure by 1=c for some arbitrary c > 1 it su�ces, by Schwartz's lemma [17,



Lem. 1], to pick the coe�cients of each hi independently, each with c log jEj bits.
It is possible to detect failure deterministically, in which case new randomized
variables must be chosen.

If the gi's are su�ciently generic, which here means that no D
(j)
i vanishes,

we may compute D
(j)
i as the determinant of Mi under the specialization

(f1; : : : ; fn+1) 7! (g1; : : : ; gj; hj+1; : : : ; hn+1) :

5.2 GCD Method

This method requires that the coe�cients of the specialized system g1; : : : ; gn+1

be non-zero and chosen from some polynomial ring over Q. Again we choose poly-
nomials hi with random coe�cients, whose size is given by Schwartz's lemma,
and specialize

(f1; : : : ; fn+1) 7! (g1 + uh1; : : : ; gn+1 + uhn+1) :

By Hilbert's irreducibility theorem, R will remain irreducible over Q[u] after
almost all such specializations. Let D1(u) be the determinant of M1 with this
specialization, and let b(u) be the extraneous factor, D1(u) = b(u)R(u).

Suppose without loss of generality that M1 was de�ned using a linear func-
tional l1 which is \much larger" than the others. The e�ect of this is that when-
ever a vertex a1j of Q1 contributes to an optimal sum, that vertex will be the one
which minimizes l1. Thus in every row containing coe�cients of f1, the leading
diagonal element will be c1j. Now let D2(u) be the determinant of M under the
specialization

(f1; f2; : : : ; fn+1) 7! (xa1j ; g2 + uh2; : : : ; gn+1 + uhn+1)

with D2(u) = b(u)R0(u), where R0(u) is the resultant under this new specializa-
tion. Therefore

R(u) =
D1(u)

GCD(D1(u); D2(u))

and specializing u = 0 gives the resultant of g1; : : : ; gn+1. It is worth remarking
that the degree of b(u) is known in advance, namely it is the number of elements
of E that do not lie in mixed facets. Thus the GCD computation is branch-free
and reduces to calculation of the appropriate minors of the Sylvester matrix of
D1 and D2, [12].

Once again if the given gi's are generic enough, in this case meaning that the
specialized resultant under fi 7! gi is irreducible, and the determinants D1(0)
and D2(0) are both non-zero, then the resultant can be computed as simply
D1(0)=GCD(D1(0); D2(0)).



6 An Example

The construction is illustrated for a system of 3 polynomials in 2 unknowns

f1 = c11 + c12xy + c13x
2y + c14x

f2 = c21y + c22x
2y2 + c23x

2y + c24x

f3 = c31 + c32y + c33xy + c34x :

Pick generic functions

l1(x; y) = L5x+ L4y

l2(x; y) = L3x+ L2y

l3(x; y) = Lx+ y

where L is a su�ciently large integer. The input Newton polytopes are shown
in Fig. 2 and a subdivision of Q+ � into 2-dimensional cells is shown in Fig. 3.
Matrix M1 appears at (5) with rows and columns indexed by exponent vectors

32 33

3431

21

24

23

22

12 13

11 14

a a

a a

a

a

a

a
a a

a a

Fig. 2. The Newton polytopes and the exponents aij

from E . Matrices corresponding to f2 and f3 are formed similarly.

2
6666666666666666666664

1; 0 2; 0 0; 1 1; 1 2; 1 3; 1 0; 2 1; 2 2; 2 3; 2 4; 2 1; 3 2; 3 3; 3 4; 3

1; 0 c11 c14 0 0 c12 c13 0 0 0 0 0 0 0 0 0
2; 0 c31 c34 0 c32 c33 0 0 0 0 0 0 0 0 0 0
0; 1 c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0 0
1; 1 0 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0 0
2; 1 0 0 0 0 c11 c14 0 0 0 c12 c13 0 0 0 0
3; 1 0 c24 0 c21 0 c23 0 0 0 c22 0 0 0 0 0
0; 2 0 0 0 0 0 0 c11 c14 0 0 0 c12 c13 0 0
1; 2 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0 0
2; 2 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0 0
3; 2 0 0 0 0 c31 c34 0 0 c32 c33 0 0 0 0 0
4; 2 0 0 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22

1; 3 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0 0
2; 3 0 0 0 c24 0 0 c21 0 c23 0 0 0 c22 0 0
3; 3 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33 0
4; 3 0 0 0 0 0 0 0 0 0 c31 c34 0 0 c32 c33

3
7777777777777777777775

(5)
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Fig. 3. The induced subdivision �� of Q + �; each facet is labeled with the vertices
which contribute to optimal sums within that facet

7 Complexity

The change of variables that may be required to ensure that the supports gener-
ate the lattice ZZn involves linear algebra and has complexity which is dominated
by that of the later steps.

Identifying the vertices of all Newton polytopes may be reduced to Linear
Programming; then we can apply either Khachiyan's Ellipsoid or Karmarkar's
algorithm. To bound the bit size of the input exponents aij we recall that the
Newton polytopes have been translated to the origin, thus every exponent is
bounded by jEj.

In the case of Karmarkar's algorithm [8] the bit complexity, omitting the
logarithmic factors, is O(m5:5

i log2 jEj) for each Qi and the output is its vertex
set, namely fai1; : : : ; ai�ig with �i � mi, possibly after reindexing. The total
complexity for all Newton polytopes is thus O(n(maximi)

5:5 log2 jEj).

The most expensive step of the algorithm is to associate an optimal sum of
points pi 2 Qi with every p 2 E . To reduce this to Linear Programming we
introduce constraints

p =
n+1X
i=1

pi =
n+1X
i=1

�iX
j=1

�ijaij



where

�ij � 0 ; for 1 � j � �i; and

�iX
j=1

�ij = 1

for each i in f1; : : : ; n+ 1g. The objective function forces the lifted point corre-
sponding to p to lie on the lower envelope of Q̂ by requiring that

n+1X
i=1

�iX
j=1

�ij li(aij)

is minimized, where the li's are the generic linear functionals.
Either polynomial-time algorithm may again be used; here we calculate the

complexity of Karmarkar's. The bit size of li(aij) is constant, once the desired
probability of success is �xed. As already seen, each aij < jEj so the bit complex-
ity after omitting the logarithmic factors is O(n5:5(maxi �i)5:5 log

2 jEj). Hence,
�nding the optimal sum for all lattice points p 2 E takes time polynomial in
n; maxi �i and E .

Lastly, we have to extract the resultant from matrix M by one of the de-
scribed methods. This can be done with linear algebra and the arithmetic com-
plexity is polynomial in the order of M . Since both the matrix order and the
input exponents are bounded by jEj, the overall complexity is polynomial in jEj.

This discussion proves

Proposition22. For any input system, the bit complexity of our algorithm is
polynomial in in n; maxifmig and jEj.

Now we estimate jEj; unfortunately, only the unmixed case can be treated with-
out requiring additional hypotheses. Consider the unmixed system

Q1 = � � �= Qn+1 :

Then the total degree of the resultant equals the sum of all n + 1 n-fold Mixed
Volumes, each being equal to n!Vol(Q1). Hence

degR = (n + 1)! Vol(Q1) :

The Minkowski Sum has volume Vol(Q) = nnVol(Q1) and the number of lattice

points in it is asymptotically the same [7]. Then jEj = O
�
nn degR
(n+1)!

�
. Using Ster-

ling's approximation and letting e be the base of natural logarithms, we arrive
at

Lemma23. For unmixed systems

jEj = O(en degR) :

Therefore



Theorem24. Assume that our algorithm executes on an arbitrary unmixed sys-
tem. Then its asymptotic bit complexity, if we omit logarithmic factors, is poly-
nomial in maxifmig and the total degree of the resultant and exponential in n
with a linear exponent.

We cannot obtain the same bounds in general because there exist cases like
the following, in which the cardinality jEj is exponential over the sum of all n-
fold mixed volumes. Suppose that all Newton polytopes are hypercubes, with
edge length constant for the �rst n and proportional to n for the last polytope.
Then jEj > nn, while the sum of mixed volumes is O(n2), hence the algorithm's
complexity is higher than polynomial in degR.

Nonetheless, our algorithm is roughly as e�cient on mixed systems whose
Newton polytopes do not di�er so drastically as indicated in Theorem 24. More-
over, a greedy version of the algorithm has been implemented on Maple V by
the �rst author and P. Pedersen, and preliminary empirical results imply that
this approach is e�cient for most systems encountered in practice.

8 Open Questions

We are currently looking into ways for decreasing the size of the determinantal
formula, the �nal goal being to obtain Sylvester-type formulas for di�erent sys-
tems. Characterizing these systems for which an optimal formula does not exist
is another active area [24]. A more theoretical question is on the connection of
our technique with Gr�obner bases, in light of [19]. Lastly, this approach leads
to improved methods for calculating the common roots of sparse polynomial
systems [5].
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