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Abstract

Indexing is a model-based recognition technique, in
which unknown objects are identi�ed using lookup ta-
bles. Indexing coordinates are extracted from sensed
features, and the indexing coordinates specify a table
entry containing the object's identity. Usually, only a
small fraction of the possible indexing coordinates cor-
respond to modeled objects, and hash tables are often
used to save space. In this paper, we present a new
indexing data structure called a tree grid which has
two advantages over hash tables: (i) The tree grid pre-
serves spatial ordering, so that nearby indexing entries
can be retrieved e�ciently (ii) The tree grid compacts
the storage size of the table by a factor of as much as
two orders of magnitude. k coordinates index an or-
dering of the interpretations, and 1 coordinate deter-
mines the consistent interpretations for objects with k
degrees of freedom. We also show that for almost all
model sets, 2k + 1 indexing coordinates are su�cient
to discriminate between two generic models, implying
that 2k + 1 indexing coordinates specify a unique in-
terpretation. We have implemented an indexing algo-
rithm for recognizing 3D objects from pairs of image
rays using the tree grid technique, and the results are
reported.

1 Introduction

State-of-the-art machine vision technology can in-
terpret scenes, i.e. recognize objects; the next step
is real-time model-based recognition. Recognition
involves interpreting the sensed features as model
features. This could require checking an exponen-
tial number of hypothetical interpretations, without
heuristics for pruning the search. One approach to
pruning the set of possible interpretations is indexing,
in which the observed features directly specify a subset
of consistent interpretations.
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De�nition 1 Hypothesis H is a matching between a
group of model features and a group of sensed features.

Indexing techniques are becoming prevalent in the
�eld of machine vision for solving the recognition prob-
lem and the correspondence problem [1, 8, 11, 9, 3,
5]. Indexing involves distilling/extracting an overcon-
straining indexing coordinate from an observation (a
group of sensed features) and then interpreting the
observation via a precomputed lookup table. Utiliz-
ing geometric invariants (descriptors which are con-
stant irregardless of the con�guration) bene�ts index-
ing since each hypothesis corresponds to a single ta-
ble entry [8, 11, 5]. Unfortunately, it has been shown
that there are no invariants for an arbitrary number
of three-dimensional points for orthographic [3] or per-
spective vision [2]. Indexing tables include predicted
observations for all con�gurations.

Overconstraint is crucial to indexing because each
observation not only speci�es a con�guration for each
hypothesis, but the observation also rates the quality
of the match between the observation and each hy-
pothesis and con�guration as well. Only a small frac-
tion of the indexing coordinates are consistent with
each hypothesis. One advantage of indexing is using
a single lookup to compare an observation with all
of the hypotheses. This is achieved by merging the
lookup tables for various hypotheses into a compos-
ite lookup table. The two advantages of indexing are
simpli�ed online computations and performing only a
single lookup operation, which enable real-time per-
formance.

In this paper, we present an e�cient indexing tech-
nique, the tree grid, which trades o� online speed
for space compression and spatial faithfulness (order
preservation). Lookup time increases by a factor of 10,
but table size shrinks by a factor of 100, allowing more
tables, of �ner resolution, to share fast main mem-
ory. Spatial faithfulness enables the user to change
the resolution of the search online, to determine the
most consistent hypothesis without performing an ex-
ponential search. We present experimental results of
this technique for a three-dimensional object recogni-



tion algorithm from pairs of edge-detected rays.

1.1 Previous Work

Clemens and Jacobs proved that under ortho-
graphic projection, indexing coordinates from three-
dimensional point groups must be represented by
at least a two-dimensional surface in a single in-
dex space [3], requiring an inordinate number of ta-
ble entries. Jacobs developed an indexing algorithm
for the more general class of a�ne transformations,
which separates the two-dimensional surface in index-
ing space into two one-dimensional surfaces (lines) in
two smaller spaces [7]. This separation reduces the
size of the tables and also simpli�es table construction.
The drawback of this approach is that for a�ne trans-
formations, having eight degrees of freedom,; overcon-
straint requires �ve point groups.

This work also stems from work in the �eld of cod-
ing theory. A set of similar lists can be stored in O(e)
space, where e is the total number of edits involved
in synthesizing the lists, which can be much less than
the sum of the lengths of the lists. Cole [4] presented
an algorithm which required examining all of the lists
simultaneously. Sarnak and Tarjan [10] described an
incremental algorithm which precluded memoization.
In the future, we plan implementing a variant of Sar-
nak and Tarjan's algorithm in order to allow memo-
ization, and we expect this to reduce the storage size
by a factor of O(log(m)), where m is the list length.

1.2 Framework

De�nition 2 Con�guration ~x describes the observ-
able state. The con�guration corresponds to the ob-
ject's pose with respect to the camera. Con�guration
space (C) describes the set of all con�gurations (~x 2
C). For example, under unscaled three-dimensional
orthographic projection, con�guration space can be
de�ned by coordinate axes of x; y; �; �;  ; z is not a
coordinate axis because it is unobservable. The ob-
servation technique may normalize out observable de-
grees of freedom; for example, the rotation in the im-
age plane is normalized by rotating a group of model
points so that the vector from the �rst point to the
second point is horizontal. k refers to the number of
normlized degrees of freedom (C = R

k).

De�nition 3 Indexing coordinate yi refers to a real
valued scalar data value distilled from a group of
sensed features; ŷ refers to an n-tuple, a set of n si-
multaneously observed indexing coordinates. Indexing
space (I) describes the set of all possibly observed n-
tuples (I = R

n, ŷ 2 I). q image points provide 2q
indexing coordinates.

De�nition 4 Hypothesis function FH for a given hy-
pothesis H, provides a map from con�guration space
into indexing space: F̂H : C ! I. The hypothesis set
is the range of this mapping, the set of all indexing co-
ordinates consistent with a particular hypothesis H.

The purpose of indexing is to map from the index-
ing coordinates ŷ to the con�guration ~x. Indexing ta-
bles TH (~y) list the con�gurations f~xg consistent with
an n-tuple of indexing coordinates (equation (1)).

TH(ŷ)=f~xjF̂H(~x)= ŷg (1)

Since each table TH only covers a small fraction of the
indexing space I, many such tables can be merged into
a composite table (TS

Hi

in equation (2)); thereby, one

can usually determine both the hypothesis and the
con�guration consistent with given indexing coordi-
nates in a single lookup operation. Each n-tuple of in-
dexing coordinates ŷ usually implies a unique hypoth-
esis Hŷ and con�guration xŷ. Essentially, indexing
techniques are used to solve the problems of the form:
given an indexing coordinates ŷ, enumerate all con-
sistent hypotheses Hi and con�gurations f~xig which
satisfy ŷ = ^FHi

(~xi) (equation (2)).

TS
Hi

(ŷ) = f< H;~x > j ~FH(~x) = ŷg (2)

Indexing techniques are based on the assumption
that the predicted indexing coordinates and the sensed
indexing coordinates will vary so slightly that both
index the same table entry. When the hypotheses
only cover a small fraction of the indexing coordinates,
indexing tables are usually implemented as hash ta-
bles. In order to index table entries, the indexing
coordinates must �rst be discretized into integral in-
dices. For completeness and correctness, indexing ta-
bles must account for any hypothesis and con�gura-
tion indexing coordinates which discretize to a table
entry's indices.

The multiple hypotheses scenario is not uncommon:
one example is the task of recognizing modeled objects
in an image. The �rst step involves identifying salient
features, such as edge-based features, from the sensor
data. The majority of the computation is spent in the
second step: interpreting the sensed features groups
as groups of modeled features. Relative to a group of
sensed features, each group of model features consti-
tutes a separate hypothesis.

For a system with k degrees of freedom, k data val-
ues only constrain the con�guration, k+1 data values
overconstrain the con�guration and thereby substan-
tially narrow the set of consistent hypotheses. Fur-
thermore, we rigorously show that 2k+1 generic data



values are necessary and su�cient in order to specify
a unique interpretation.

Current indexing implementations have three draw-
backs: the completeness requirement, the size of the
composite tables, and the non-spatially faithful nature
of hash tables. Constructing complete tables is a di�-
cult task. The size of the composite tables is also im-
portant because a large composite table may thrash,
obviating the theoretical constant-time performance.
Of lesser importance is spatial faithfulness, which sim-
pli�es the task of determining the closest hypothesis;
this is normally accomplished by searching all of the
nearby indexing coordinates, a procedure which, for
hash tables, takes time exponential in n.

1.3 Algorithmic Overview

In this paper, we present a table indexing tech-
nique, the tree grid, which provides compaction and
spatial faithfulness. The tree grid achieves these re-
sults by ordering the hypotheses, and performing bi-
nary searches on these orderings. k indexing coordi-
nates are used to index an ordering of the hypotheses,
and 1 indexing coordinate is used to search through
that ordering. Storage space is lessened because the
hypothesis orderings are similar lists, and the storage
space for similar lists depends upon the number of ed-
its, not the total number of elements. This approach
exploits the coherence of the hypothesis orderings; we
want to reduce the task of indexing to performing a
binary search on the hypothesis orderings. In this pa-
per, we present an ordering on the hypotheses.

The tree grid technique relies on three major ideas:
concentration, segmentation, and discretization. We
concentrate on k + 1 data values of the indexing n-
tuple. These k + 1 data values are segmented into
k independent coordinates and 1 dependent coordi-
nate. The k independent coordinates are discretized
to a grid point, indexing an ordering of the hypothe-
ses. Finally, we determine the hypotheses consistent
with the indexing coordinates by performing a binary
search using the dependent coordinate, and then vali-
dating each of those hypotheses using the n� (k + 1)
indexing coordinates.

1.4 Overview

In section two, we rigorously prove that 2k+1 data
values are necessary and su�cient to generically spec-
ify a unique hypothesis. In section three, we develop a
theoretical framework for the tree grid indexing tech-
nique. In section four, we detail the implementation
of the tree grid indexing technique. In section �ve, we
present experimental results of the storage space com-
paction of the tree grid technique. Finally, we con-
clude by highlighting the contributions of this work.

2 Sparse Observation Theorem

In this section, we present a rigorous proof of the
sparse observation theorem.

Theorem 1 2k+1 observed values are necessary and
su�cient to distinguish generically between two objects
with k generic normalized degrees of freedom.
Proof There is a lower bound on the number of

highly precise data values necessary to di�erentiate
two dissimilar generic objects, and this bound can be
shown by a dimension counting argument. Consider
an object with k normalized degrees of freedom and
n observed data values. Each con�guration ~x 2 R

k

maps to a set of n-tuples of observed data values, and
this set has dimension k, and codimension n � k in
data value space. The codimension of the intersec-
tion of two generic sets is equal to the sum of the
codimensions of those strati�cations. For n > 2k, the
codimension of intersection > 2k which implies that
the dimension of the intersection is < 0.

Let P be a parametrization of the space of models.
Let M : P � C ! I be the meta-hypothesis func-
tion. So ŷ = M (p; ~x) is the sensor tuple arising from
model p in con�guration ~x. We can then give an al-
ternative de�nition for the hypothesis set for a model
p as M (p; C) � I. Note that we seem to be ignoring
the correspondence problem between model and image
features. For the purposes of this proof, which relates
to dimension, we are including the feature assignment
as part of the model. Since there are �nitely many
possible correspondences, it does not a�ect our result
whether we do this or not.

Now let H1 = M (p1; C) be the hypothesis set for
hypothesis p1, and H2 = M (p2; C) be the hypothesis
set for hypothesis p2. Under a certain condition on
the model map, and for generic, i.e. almost all choices
of p1 and p2, H1 and H2 will be disjoint. If H1 and
H2 are disjoint, there is no possibility of confusing p1
and p2. There are several conditions onM that imply
this. The �rst and strongest is:

Condition 1:

A map M : P � C ! I is regular if its di�erential
(jacobian) is everywhere surjective. This condition is

stronger than necessary, but is easy to state, and prob-
ably easier to verify in most situations. In essence it
says that by perturbing both pose and model parame-
ters, we can move a sensor value ŷ 2 I a small distance
in any direction.

Condition 2:

A mapM : P �C ! I is transversal to a strati�ed set
H1 if M is transversal to all the strata in H1.



For de�nitions of transversality, we refer the reader
to [6]. Condition 1 implies condition 2 for any H1, so
it is strictly stronger, and we take it as the premise
for our theorem:

Theorem 2 Suppose condition 2 above holds for a
hypothesis function (mapping)M , and that the dimen-
sion of the indexing space is at least 2k+ 1. Then for
almost all choices of p2 2 P , H2 = M (p2; C) is dis-
joint from H1.
Proof: A basic property of transversality is that

if a parametrized class of mappings (M in this case,
parametrized by P ) is transversal to a manifold (the
manifolds in H1), then almost every map in the class
is transversal to H1. See e.g. the remark before Corol-
lary 4.7 of [6].

Now M is transversal to H1 by condition 2. There-
fore M (p2; �) : C ! I is transversal to H1 for almost
every p2. The transversality condition implies that
the codimension of M (p2; �)

�1(H1) equals the codi-
mension of H1 in I. Since H1 has dimension k and O
has dimension 2k+ 1, the codimension of H1 is k+ 1.
The codimension ofM (p2; �)�1(H1) is also k+1, but it
inhabits con�guration space C of dimension k, which
means it must be empty. M (p2; �)�1(H1) empty says
that there is no point in both H1 and H2. 2

3 Theoretical Framework

In the tree grid indexing technique, consistent hy-
potheses are found using only k + 1 of the n in-
dexing coordinates. The projection � : R

n ! R
k

extracts k indexing coordinates, and the projection
k+1
�: Rn ! R

k+1 which extracts k + 1 coordinates.

y
1y
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y
3

y = F (x)

Figure 1: An example of a two-dimensional hypoth-
esis set parameterized as ŷ = F̂ (~x). In this case,
C is three-dimensional (y1; y2; y3), and I is two-
dimensional (x1; x2).

De�nition 5 Independent coordinates correspond to
the �rst k indexing coordinates (�(ŷ)). k indepen-

dent coordinates provide su�cient constraint so that
only a �nite number of con�gurations are consistent
with �(ŷ). In �gure 1, y1 and y2 were chosen as the
independent coordinates.

De�nition 6 Dependent coordinate is k + 1st index-
ing coordinate (y3 in Figure 1). Generically, since only
a �nite number of con�gurations are consistent with
the independent coordinates, only a �nite number of
dependent coordinates are consistent with the inde-
pendent coordinates.

3.1 Separating Sets Into Monotone Sheets

In order to realize a unique mapping from inde-
pendent to dependent coordinates, we want to impose
monotonicity. This is achieved by separating the hy-
pothesis sets into monotone hypothesis sheets. On
these hypothesis sheets, the dependent coordinate is a
single valued function of the independent coordinates.

De�nition 7 Hypothesis sheet SH is a continuous
subset of the hypothesis set such no two points in the
sheet share the same independent coordinates (Fig-
ure 2).
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Figure 2: The hypothesis set is separated into sheets
such that no two points on a sheet share the same
independent coordinates.

3.1.1 Base Grid

Indexing into tables requires integral indices; there-
fore, the indexing coordinates need to be discretized.

De�nition 8 Base grid, B refers to a k-dimensional
grid in R

k. The term grid point (b�(ŷ)c 2 B)
refers to the discretized independent coordinates
(by1

�1
c; by2

�2
c; : : : ; byk

�k
c). The termM refers to the max-

imum number of hypothesis sheets over any point on
the base grid.



De�nition 9 Height function, (h(b�(ŷ)c)) formu-
lates the dependent coordinate yk+1 as a function of
the independent coordinates b�(ŷ)c.

De�nition 10 Ordered hypothesis list (Ab�(ŷ)c) de-
scribes an ordering of the hypothesis sheets at a par-
ticular grid point b�(ŷ)c according to their dependent
coordinates (refer Figures 3 and 4).
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Figure 3: The hypothesis sheets above a particular
base grid point b�(ŷ)c are ordered according to their
dependent coordinates.
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Figure 4: The ordered hypothesis list Ab�(ŷ)c of the
hypothesis sheets above grid point b�(ŷ)c.

4 Indexing Table Implementation

In this section, we describe a table indexing imple-
mentation technique, the tree grid, which reduces the
storage size of the table and preserves order (spatial

faithfulness). In the �rst steps, only
k+1
� (ŷ) is used.

For each hypothesis sheet < Hi; j > (j an sheet index
of hypothesis Hi), �(ŷ), the independent coordinates
specify a unique con�guration (refer equation (3), im-

plying that there exists a function F̂H
�1

: �(ŷ) ! ~x

(refer equation 4). Therefore, there also exists a height

function hHi;j which is the composition of F̂H
�1

and
fk+1, so that the 1 dependent coordinate yk+1 val-
idates the hypothesis sheet and that con�guration.
The main idea is that we de�ne ordered lists (Ab�(ŷ)c)
of the hypothesis sheets above all of the grid points B.
At runtime, the consistent hypotheses are determined
by performing binary search on Ab�(ŷ)c with yk+1.

y1; y2; : : : ; yk ! (x1; x2; : : :xk)j (3)

9j s:t: yk+1 = fk+1((x1; x2; : : :xk)j) (4)

yk+1 = hHi;j(y1; y2; : : : ; yk) (5)

4.1 Sketch of Algorithm

Given a n-tuple of indexing coordinates ŷ, we dis-
cretize k values (b�(ŷ)c) to index an ordered hypoth-
esis list (Ab�(ŷ)c), and then search for yk+1 in that
ordered list. This produces a subset of hypotheses

consistent with
k+1
� (ŷ) which are then validated with

respect to the entire observation ŷ.

4.2 Ordered Hypotheses Lists

This algorithm is based upon the ordered hypoth-
esis lists Ab�(ŷ)c in order to exploit the coherence
(slowly varying nature) of those hypothesis orderings.
This strategy saves space because storing similar lists
takes up less space than storing the lists individually
(equation (6)). This strategy also provides spatial
faithfulness.

X
b2B

min
�2neighbors(b)

jAb �A� j �
X
b2B

jAbj (6)

The only drawback in the tree grid approach is that
it involves performing a binary search on the hypothe-
sis sheets at runtime; the search time can be bounded
(O(log(M ))) by using balanced trees (see Figure 4.2).
Executing the search involves recomputing the heights
hHi;j(b�(ŷ)c) of log(M ) hypothesis sheets.

4.3 Constructing Space E�cient Ordering Trees

De�nition 11 Ordering trees (Tp) describe the order-
ing Ap above a grid point p.

Ordering trees are generated in the following man-
ner in order to share subtrees: Tpchild , for hypothe-
sis ordering Apchild , is generated by performing a se-
quence of tree operations (change, insertion, deletion)
on a parent tree (Tpparent) with a similar hypothesis
ordering Apparent ; each edit corresponds to one tree
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(Binary Search Trees)
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Figure 5: Height ordering trees above the base grid

operation. Notice that each tree operation only af-
fects one path through the ordering tree, allowing both
trees to share the other subtrees (see Figure 6).
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Parent tree for
 ordering "A"

Child tree for
 ordering "B"

Figure 6: An ordering tree TB, for ordering B, shares
many subtrees with TA, for ordering A, because A and
B di�er by only a single element. Describing TB using
TA's subtrees involves a sequence of edit operations,
where each edit operation requires O(log(M )) nodes.

Ordering trees were implemented using persistent
tree structures so that tree operations on Tpparent
left Tpparent intact. Persistent AVL trees were used
rather than a more specialized data structure [10] even
though each AVL edit generates O(log(M )) new nodes
(compared to O(1) new nodes/edit). The total num-
ber of nodes to store all of the ordered lists is approx-
imately O(e� log(M )), where e� is the total number
of edits between the hypothesis orderings.

4.4 Indexing Algorithm

The algorithm determines the hypothesis sheet

closest to a projected indexing coordinates
k+1
� (ŷ) in

O(log(M )) time.

1. Given ŷ, lookup the ordering tree Tb�(ŷ)c.

2. Determine the hypothesis sheet(s) consistent with

the projected indexing coordinates
k+1
� (ŷ) by

performing a binary search on the ordering tree
Tb�(ŷ)c using the dependent coordinate, yk+1.

3. Validate each hypothesis using ŷ.

4.5 Generating the Ordering Trees T

1. Compute the minimum edit distances between
hypothesis orderings Ab; Ab0 of neighboring grid
points b; b0 2 B.

2. Construct a graph G in which grid points are
nodes and the edges between neighboring grid
points are weighted by the minimum edit dis-
tances.

3. Compute the minimum spanning tree MG of G.

4. Select an initial grid point pinit and construct an
ordering tree Tpinit for hypothesis ordering Apinit .

5. Perform depth �rst search on MG starting with
pinit. When expanding node pparent, for all pre-
viously unexplored neighbors pchild construct the
ordering tree Tpchild by performing a series of edit
operations on Tpparent determined by the mini-
mum edit sequence between Apchild and Apparent .

4.6 Analysis

4.6.1 Tree Grid Construction Running Time

The majority of time constructing the trees is spent
in step 2, computing all of the minimum edit dis-
tances between hypothesis orderings of neighboring
grid points, and step 5, modifying trees using the
minimumedit sequences between hypothesis orderings
of neighboring grid points. Computing the minimum
edit distance between two lists of length M takes Me

time, where e is the number of edits. Computing all
of the minimum edit distances for kjBj pairs of hy-
pothesis orderings (we need to check k neighbors for
each grid point) takes kjBj �Me time, where e refers
to the average number of edits between hypothesis or-
derings (jBje = e�). Recomputing the minimum edit
sequences for tree operations takes jBj � Me time.
The algorithm's total time complexity is O(jBjkMe).
The total number of nodes to describe the tree grid is
e� log(M ) using AVL trees, or e� using more special-
ized data structures. e� is bounded by the number of
di�erent hypothesis orderings.

4.6.2 Bounds on the Number of Orderings

Next we derive an upper bound on the number of dif-
ferent height orderings forM hypothesis sheets above



the grid points. We invoke a theorem which says that
M algebraic surfaces of constant degree in R

k produce
an arrangement with O(Mk) cells. This analysis de-
pends upon the assumption that the intersection of
each pair of hypothesis-sheets is a surface of constant
degree in R

k.

Orderings change in only three ways: removing a
hypothesis sheet from the current ordering, inserting
a hypothesis sheet into the current ordering, and in-
terchanging the order of two hypothesis sheets. We
assume that the majority of orderings result from in-
terchanging the order of two hypothesis sheets.

Since we are only concerned with orderings above
the base grid points, we can restrict our view to base
lines including rows of grid points (y1 = r1�1; y2 =
r2�2 ; : : : j r1; r2; : : : 2 I) Consider the height func-
tions of the models above each of these base lines as
one-dimensional curves in the two-dimensional cross-
section. Areas of constant ordering correspond to cells
in the arrangement of these M height function cross-
section curves. The theorem says that the number of
cells in the arrangements, and thereby the number of
edits, for M such curves is O(jBjM2).

4.7 E�cient Performance Heuristics

4.7.1 Separating Hypotheses Sheets

Dividing the hypotheses sheets into l subsets shrinks
the composite table because there are fewer edits, and
each edit involves fewer nodes. If a single set contains
all of the hypothesis sheets, then there are O(M2)
possible di�erent hypothesis orderings, but if the hy-
pothesis sheets are separated into l subsets, then there
are only O(l(M

l
)2) di�erent hypothesis orderings. For

a single set, each AVL edit involves O(log(M )) nodes;
for l subsets each AVL edit involvesO(log(M )�log(l))
nodes. Dividing the hypotheses sheets into subsets in-
creases the lookup time by a factor of l, since each
subset must be individually checked.

4.7.2 Memoization

A naive implementation of tree operations generates
subtrees for every new subsequence, even if these sub-
sequences already have been transcribed into trees. The
motivation for memoizing the subsequences is that
memoization can only shrink the table size, and mem-
oization takes very little time and space. Checking
the balanced subtrees of a sequence with n elements
takes linear time. Memoizing the hypothesis ordering
subsequences results in table compaction by a factor
of between three and ten.

5 Experiments and Results

In this section, we describe a model-based
three-dimensional recognition technique from two-
dimensional image data assuming unscaled orthonor-
mal projection. Observations were generated from
pairs of rays in the manner shown in Figure 7, an ex-
tension of the vertex pairs described by Thompson and
Mundy [12]; image ray pairs are symmetric to groups
of four image points. The rays parameterization im-
plicitly normalizes out three of the �ve degrees of free-
dom of unscaled orthographic projection: absolute x
and y position information is normalized because ver-
tex v1 is translated to the origin, absolute orientation
is normalized because we assume that the �rst ray of
v1 is transformed to be parallel to the x-axis. In this
manner, there are two normalized degrees of freedom
(k = 2): �x, rotation around the x-axis, and �y , ro-
tation around the y-axis. The scale factor could be
normalized away by scaling v1 to length 1.
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Figure 7: After normalizing the rays by rotating and
translating vertex v1 to the origin and one of its rays is
aligned with the x-axis, the image ray parameteriza-
tion is: x; y position of v2, and �; �; 
, the orientations
of the other rays relative to the x-axis.

For a given hypothesis (m1;m2), the four con�gu-
rations f(�x; �y)ig can be extracted as follows:

1. Determine the two orientations �x1 ; �x2 which ro-
tate the vertex m2 to the correct y position (v2:y).
Rotate m2 by �x1 ; �x2 to predict m0

2 and m
00
2 .

2. For m0
2 and m00

2 , determine the two orientations
�y1 ; �y2 which rotate m0

2 or m00
2 to the correct x

position (v2:x).

The dependent coordinate can be any of the orienta-
tions of the other rays. Notice that �ve values (2k+1)
are observed. This should su�ciently di�erentiate the
hypotheses and ensure a unique interpretation. The
index table implementation was tested by using real
model groups (*, the stapler in [3]) and randommodel
groups, and then constructing the table for the respec-
tive hypothesis sheets. The size of the compacted ta-
bles, and the compaction ratio as a function of the



M
q
j 1B j Grid # # Compaction

Spacing Entries Nodes
25* 1

100
1959460 16983 115.38

25* 1
150 4399560 18417 238.89

50 1
100 3520520 26808 131.32

50 1
150

7902660 28189 345.72
50 1

100 2852068 18639 153.02
75 1

100 4772700 82156 58.09
75 1

150 10631948 105477 100.79
100 1

100 6416292 200033 31.28
100 1

100 6564076 220021 38.97

Table 1: Compaction ratios for lookup tables of real
(*) and randomly generated hypotheses. The hypoth-
esis sheets are separated into eight subsets.

number of hypothesis, and resolution (grid spacing) is
given in Table 1. This recognition technique was ex-
perimentally validated by interpreting groups of four
image points as groups of stapler model vertices from
data given in [3].

5.1 Discussion

Notice that increasing the resolution increases the
compaction ratio, and increasing the number of hy-
potheses decreases the compaction ratio. The case of
increasing resolution can be explained in the following
way: if increasing the resolution does not signi�cantly
increase the total number of edits, e� because most of
the hypothesis orderings already appear at the coarser
resolution, while increasing the resolution signi�cantly
increases the number of table entries, the compaction
ratio increases. The decreasing compaction for larger
hypothesis sets can be explained in the following way:
the number of orderings increases as the square of the
number of hypotheses; if there are more orderings,
each grid point has a higher probability of being asso-
ciated with a di�erent ordering, requiring more edits.
Since the table storage size depends upon the num-
ber of edits, the compaction ratio decreases with more
hypotheses. Increasing the number of subsets coun-
teracts increasing the number of hypotheses because
separating the hypothesis sheets into more subsets im-
proves compaction.

6 Conclusion

In this paper, we presented a indexing table tech-
nique, the tree grid, which combined space compaction
with spatial faithfulness. This technique exploited
the fact that k + 1 observation values prune the set
of consistent hypotheses; we also presented a proof

on the minimum number (2k + 1) of generic obser-
vation values necessary to specify uniquely a generic
hypothesis. The tree grid approach enables the user
to trade-o� storage space and lookup time via a bi-
nary search on the hypotheses. In some cases, this
approach compacted the total storage size of the table
by a hundred-fold. We presented experimental data
for three-dimensional object recognition from two im-
age rays.
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