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Abstract

Fixturing is a fundamental problem in mechanical

assembly. Usually, two and a half dimensional objects

can be �xtured in many di�erent ways using a �xture

vice, especially if pegs of di�erent radii are available.

We present an algorithm which enumerates all force

closure �xture vice con�gurations and corresponding

object poses. Automatic �xture design algorithms are

essential for planning because optimal �xturing selec-

tion for multiple operations requires examining all of

the valid con�gurations. The algorithm runs in O(A)
time, where A is the number of con�gurations which

simultaneously contact the object.

1 Introduction

The task of immobilizing a workpiece via mechani-
cal devices, commonly called �xturing or workholding,
is an essential problem in manufacturing. Machining
�xtures must handle very large forces (20KN), whereas
assembly �xtures handle smaller forces (50N). Fixture
apparatus design is more a craft than a science. With-
out geometric analysis, a �xturing expert system is
capable only of describing \types" of �xturing compo-
nents, not the positions of the �xtures and the object.
This paper details a methodological, geometric, �x-
turing design algorithm.

As a �rst step towards designing an analytic �x-
ture planning system, we analyze a nontrivial task:
the task of enumerating all con�gurations for immo-
bilizing a particular object using a �xture vice, a de-
vice commonly used in woodworking. A �xture vice
consists of modular �xture elements (pegs) placed on
�xture tables which are mounted on jaws of a vice,
as shown in Figure 1. The �xture vice possesses
the minimumnumber of degrees of freedom necessary
(one) to deal with workpiece variations. Theoretically,
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it can immobilize any generic two and a half dimen-
sional object. It could also be used as an adaptable

gripper. The �xture vice is based on three mechanical

Figure 1: A �xture vice consists of two �xture table
jaws capable of translating in x.

devices: pegs, a �xture table, and a vice. It combines
simplicity and e�cacy. Vice contacts can only occur
at vertices, but �xture vice contacts can occur any-
where on an object. Fixture vices can hold objects
without crushing corners, and can immobilize objects
using internal holes. When using a �xture vice, one
need only roughly identify the pose and verify that
speci�ed edges of the object contact speci�ed pegs.
This is because four generic edges can simultaneously
contact four pegs in at most four di�erent ways.

One advantage of using �xture vices is reducing
changeover time by reusing part or all of the �x-
ture for sequential operations. Usually, many di�erent
�xture con�gurations are capable of �xturing an ob-
ject, especially if pegs of di�erent radii are available.
Since optimal selection requires examining all con�gu-
rations, e�cient, complete algorithms are essential to
realize potential changeover time savings. In this pa-
per, we present a polynomial time, complete algorithm
for computing �xture con�gurations for immobilizing
two and a half dimensional polyhedral objects. The
algorithm works with the object's shadow and a two-
dimensional representation of the �xture vice (refer
Figure 2).



Figure 2: A two-dimensional view of the object and
�xture vice in Figure 1.

1.1 Related Work

This research stems from work in Reduced Intri-
cacy Sensing and Control (RISC) robotics, which at-
tempts to combine simple, modular hardware with in-
telligent software [3]. Hazen and Wright presented
a thorough overview on research in automated �x-
turing components, techniques, planning, and execu-
tion [7] which suggested that most of the planning
research focuses on expert systems. Asada and By
developed the Automatically Recon�gurable Fixtur-
ing (ARF) system, which automatically synthesizes
and constructs workholdings consisting of modular
�xtures[1]. Markus et al. described an interactive ex-
pert system for designing workholdings composed of
towers[10]. Mishra proved lower bounds on the num-
ber of toe clamps necessary to immobilize a rectilinear
polyhedral object [11]. Brost and Goldberg described
a complete algorithm for �xturing two and a half di-
mensional polyhedral objects using a �xture plate and
a side clamp [2]. Force closure has been discussed in
the grasping and robotics literature. Markensco� et al.
gave �nite lower bounds on the number of �ngers re-
quired to immobilize a two or three dimensional object
with or without friction [9], as well as an e�cient al-
gorithm for computing �nger placements on polygonal
objects which minimize the maximum force necessary
to counter any unit force through the center of mass
[8]. Mishra et al. [12] used Steinitz's theorem to prove
a lower bound on the number of �ngers necessary for
immobilization. Nguyen constructed independent re-
gions of contact on polygonal and polyhedral objects
over which all contacts produced force closure [13].
Ferrari and Canny [6] introduced two quality criteria

for scoring grasp con�gurations. Faverjon and Ponce
extended Nguyen's work on independent regions to
curved two-dimensional objects [5].

1.2 Notation

� O refers to a two and a half dimensional polyhe-
dral object.

� ~E refers to a quartet of jaw-unspeci�ed edge seg-
ments.

� ~Ei refers to the ith quartet of jaw-speci�ed edge
segments of object O, edge segments combined
with �xture jaws they contact. Ei;k refers to the

kth edge segment of the quartet ~Ei.

� ~Fi;j refers to the jth quartet of peg positions con-

tacting edge segments ~Ei. Fi;j;k refers to the kth

�xturing position of the set of �xturing positions
~Fi;j.

� �row and �column refer to the spacing between
the rows and columns respectively on the modular
jaws (refer Figure 3).
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λ
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Figure 3: �row and �column refer to the spacing be-
tween the rows and columns respectively on the mod-
ular jaws.

� Bracketed expressions refer to continuous interval
ranges of values: e.g., < �consistent > refers to the
range of orientations consistent with the variable
�consistent. Ranges can be collected in sets: e.g.,
f< �consistent >g refers a the set of continuous
boundary arcs. The � operator describes range
addition: < a; b > � < c; d > = < a+ c; b+ d >.

1.3 Overview

The con�guration of a �xture vice describes the peg
positions and radii. In this algorithm, we also use the
term con�guration to specify the object's pose, the
peg positions ~F , and the jaw separation distance �;
the term force closure describes the capability of re-
sisting arbitrary forces and torques. We assume fric-
tionless point contacts between the object and the
pegs. The algorithm runs in O(A) time where A is

the number of di�erent sets of peg positions f ~Fg si-
multaneously contacting quartets of edges; there can

be O(n4(( ��

�row�column
)2 �2

�row�column
)) such peg con�gu-

rations, where n is the number of edges, � is the maxi-
mum distance between points in O, � is the maximum
edge distance, and �row and �column are the row and
column spacings respectively.

The algorithm generates all peg con�gurations si-
multaneously contacting each set of edge segments.
For each set of edge segments, the problem is sepa-
rated into enumerating combinations of peg positions



which simultaneously contact the edge segments, and
computing the contacts between these components in
order to verify force closure. Throughout this report,
�xture con�gurations are described by peg positions
~F and the corresponding edges ~E.
Algorithm:

1. Enumerate all jaw-speci�ed edge segment quar-
tets (combinations of four edge segments such
that any edge segment can appear more than
once) f ~Ea; ~Eb; : : :g of an object O capable of gen-
erating force closure .

2. For each quartet of jaw-unspeci�ed edge segments
~Ea, enumerate all di�erent combinations of in-
tended jaw contacts. Without loss of generality,
only seven di�erent situations need to be consid-
ered: four where three edges contact the left jaw,
and three where pairs of edges contact both jaws.

3. For each edge segment quartet ~Ei, compute
peg con�gurations f ~Fi;1; ~Fi;2; : : :g simultaneously

contacting ~Ei (refer Figure 4).

Figure 4: Di�erent peg con�gurations ~F1, ~F2, ~F3 si-
multaneously contacting edge segments ~E .

4. Compute the contact points between edge seg-
ments ~Ei and pegs ~Fi;j, and verify force closure.

The bounds are achieved by assuming that the �rst
peg is placed at the origin of the left jaw because
without loss of generality, translated copies of con-
�gurations are redundant. The second peg on the
left jaw must be inside an annulus around the origin
( ��

�row�column
), the peg on the right jaw must be inside

a circle centered at the origin ( �2

�row�column
), and the

�nal peg must be inside an annulus of another peg on
that jaw ( ��

�row�column
).

In section two, we present theoretical background
and geometrical framework for both the enumeration
algorithm and pose determination technique. In sec-
tion three, we outline an algorithm which enumerates
all possible sets of peg positions: f ~Fi;1, ~Fi;2; : : : g

contacting a particular set of edges ~Ei: this set is con-
structed incrementally{ �rst, generating all possible
positions for the �rst peg, and then generating all pos-
sible positions for the second peg for each �rst peg

position, and so on. In section four, we describe a
pose determination technique for computing the ob-
ject's pose satisfying the condition that the edge seg-
ments ~Ei contact the pegs ~Fi;j mounted on translating
jaws; thus verifying contact and grading the quality of
the �xture con�gurations. We conclude by highlight-
ing the results and advantages of this technique.

2 Theoretical Background

Theoretical background is introduced in this sec-
tion.

2.1 Observations

We make two observations: cylindrical or 
atted
pegs (�xture elements) can be considered point con-
tacts by suitably transforming the corresponding edge
(refer Figure 5), and there are only two generic modes
of simultaneous contact: Type I- two edges of the ob-
ject contact pegs on each each jaw, and Type II- three
of the object's edges contact pegs on a single jaw (refer
Figure 6).
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Figure 5: Cylindrical or 
atted pegs, can be con-
sidered point contacts by suitably shifting the corre-
sponding edge.

OO

Figure 6: Type I (left): two edges of the object contact
pegs on each jaw. Type II (right): three edges of the
object contact pegs on a single jaw.

Claim 1 At least one endpoint of all extremal length

chords between any two edges coincides with a vertex

of one of those edges.

Claim 2 The orientations of vectors between points

on two edges form a continuous interval range, whose

boundaries result from pairwise combinations of ver-

tices of those edges.



2.2 Four Degrees of Freedom are Necessary to
Fixture Two and a Half Dimensional Objects

Generic �xturing techniques for two and a half di-
mensional objects require at least four degrees of free-
dom, and this is shown by a dimension counting ar-
gument: force closure requires four simultaneous con-
tacts; satisfying four constraints generically requires
four-degree-of-freedom systems, i.e., the �xture vice
(x; y; �: object, �: �xture vice).

2.3 Paramaterization for Maintaining Contact
Between Two Lines and Two Points

Let us parameterize the contact positions between
two pegs and two edges as the angular position of the
extended intersection of the edges on a circle. This pa-
rameterization is based upon the geometric property
that the interior angle between a point on a circle's
boundary and a circular arc remains constant. Let P�
be the intersection (refer Figure 9) of the two lines
(in a consistent frame), C be the circle including the
two contact points Fi;j;1, Fi;j;2 and P�. Let A be an
arc de�ned by the two points. The interior angle be-
tween P� and A is equal to a only on when P� is on
the circle's boundary (refer Figure 7). This suggests
the parameterization: � = \(P� � center(C)), which
is used to compute the regions crossed by other edges
(refer sections 3.5- 3.6). The method breaks down
when the two lines are parallel; in those cases, there is
another parameterization: the object's orientation is
one of two orientations, and its position can translate
parallel to those lines.

E i,1

Ei,2

χ

Fi,j,1

Fi,j,2C

P
Aa

(Cx,Cy)

Figure 7: Parameterizing the object's pose by the po-
sition of the extended intersection P� on the circle's
boundary maintains contact between Ei;1, Ei;2 and
Fi;j;1, Fi;j;2.

3 Fixture Con�gurations Contacting a

Set of Edges

In this section, we describe the peg con�guration
algorithm and subroutines.

3.1 Algorithm Outline

The algorithm e�ciently enumerates all peg con-
�gurations f ~Fi;1; ~Fi;2; : : :g simultaneously contacting

a set of edge segments ~Ei. It exploits geometrical con-
straints between the peg positions and the edge seg-
ments and is outlined below:

1. Compute < �consistent >, the orientations of the
object O, and enumerate the possible positions of
the second peg Fi;j;2 assuming Fi;j;1 is at the left
jaw origin (refer sections 3.2, 3.3).

2. Parameterize the object's pose by the extended
intersection, � of Ei;1, Ei;2 (refer section 2.3),
and compute f< �consistent >g, the consistent
interval ranges of � (refer section 3.4).

3. Compute all positions of remaining pegs with re-
spect to the left jaw by computing the discrete
�xture rows crossed by Ei;3 and Ei;4 (refer section
3.5), and then computing the range of x coordi-
nates crossed on each row (refer section 3.6).

4. Depending upon the type (I or II) of contacts,
compute the peg positions on their intended jaws
from these x ranges (refer sections 3.7, 3.8).

3.2 < �consistent >: Object Orientations

The object's orientation � must conform to the fact
that, without loss of generality, an edge which contacts
a peg on the left jaw cannot lie entirely to the right
of an edge contacting a peg on the right jaw; the term
�consistent refers to the orientations resulting from in-
tersecting this constraint over all pairs of opposite jaw
edges.

3.3 Positions of the Second Peg Fi;j;2.

The second peg is constrainted in two ways: the
distance between Fi;j;1 and Fi;j;2 must agree with the
distance between two points on Ei;1 and Ei;2, and the
orientation between Fi;j;1 to Fi;j;2 is constrained to lie
within the range < !consistent > (refer equation ( 1)).
These constraints imply that Fi;j;2 must lie within
a wedge of an annulus de�ned by < !consistent >,
minRadiusi, and maxRadiusi (refer equations ( 1)-
( 3) and Figure 8).

min�i = min
v12Ei;1;v22Ei;2

\(v1 � v2)

max�i = max
v12Ei;1;v22Ei;2

\(v1 � v2)

<!consistent> = <�consistent>�<min�i;max�i>(1)

minRadiusi = min
v12Ei;1;v22Ei;2

jv1 � v2j (2)

maxRadiusi = max
v12Ei;1;v22Ei;2

jv1 � v2j (3)

3.4 f< �consistent >g: Positions of Extended Inter-
sections

The position of the extended intersection P� must
satisfy the constraints described by �consistent and
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Figure 8: Fi;j;2 is inside a wedge of the annulus de�ned
by minRadiusi, maxRadiusi, and < !consistent >.

!consistent. The term �consistent refers to the extended
intersections satisfying both of these criteria.

The extended intersection parameterization breaks
down when the extended edges contact the pegs but
the actual edge segments do not. This condition is
tested by determining the minimum and maximum
distances from the extended intersection to both edges
Ei;1, Ei;2 (�i refers to the minimum distance, and �i
refers to the maximumdistance). � must lie on an arc
between the annulus described by Fi;j;1, �1, and �1 as
well as the annulus for Ei;2 and Fi;2.
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Figure 9: P� refers to the extended intersection of the
�rst edge Ei;1 and the second edge Ei;2.

3.5 Fixture Rows fRi;k;lg Crossed by Edge Ei;k

The �xture rows crossed by the edge segment Ei;k
are computed by determining the continuous range of
y coordinates covered by Ei;k, while maintaining con-
tact between the �rst two edges and two pegs (refer
�gure 11). The extremal y coordinates in this range
result from vertices vi;k;m of Ei;k. Over each continu-
ous range of < �consistent >n, the y coordinate range
for each vertex is found by testing the extremal orien-
tations of �, and also orientations of locally extremal
y values. Locally extremal orientations are found by

substituting u = tan(�4 ) and solving for u in
dY (u)
du

= 0
(refer Figure 12, equations ( 4), ( 5))). In equations
( 4) and ( 5), 
 refers to the interior angle between
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Figure 10: The minimum and maximum edge lengths
�i, �i constrain f< �consistent >g, the orientation cor-
responding to the position of the extended intersection
P� along the circle's boundary.
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Figure 11: The �xture rows intersecting the region
swept by Ei;k while maintaining contact between Ei;1,
Ei;2 and Fi;j;1, Fi;j;2.

P� Ei;2 and P� vi;k;m; S refers to the distance between
P� and v; � refers to the orientation of Ei;2's contact
point (Fi;j;2) with respect to the center of the param-
eterizing circle C; R refers to the radius of the pa-
rameterizing circle C. Given the set of discrete �xture
rows crossed by Ei;k, the next step is to determine the
x coordinate ranges along each row.
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Y (u) = Cy +
1

(1 + u2)2
(R4u(1 � u

2)

�S(1 + u
2)((1� u

2) sin(�)� 2u cos(�))) (4)

dY (u)

du
=

4

(1 + u2)3
(R+ cos(�)S + S sin(�)u� 6Ru2

+S sin(�)u3 +Ru
4 �

1

2
cos(�)Su4) (5)

3.6 < JR >E: X Coordinate Range for Peg Fi;j;k

for Ei;k On Fixture Row Ri;k;l

In this section we compute < JR >, the x co-
ordinate range along a �xture row crossed by an
edge segment. The �rst step involves computing

f< �
Ri;k;l

consistent >g which combines f< �consistent >g
with the constraint that Ei;k crosses the �xture row

Ri;k;l. f< �
Ri;k;l

consistent >g is computed by sorting all
of the � orientations s.t. Y (�) = R:y and the ex-
tremal orientations of f< �consistent >g, and testing
the intermediary ranges.

Figure 13 shows the model used in computing
the x coordinate of the extended intersection, termed
J(�) (refer equation 6), between an edge segment
and a horizontal �xture row as a function of � (u =
tan(�4 )). In �gure 13, � refers to the interior angle

between P�Enormal
i;k and P�Ei;2, and Q refers to the

minimum distance between P� and Ei;k. The range
< JR > is computed by checking the boundaries of
< �Rconsistent >i as well as orientations corresponding

to locally extremal x coordinates, i. e. dJ(u)
du

= 0 (re-
fer equation ( 7)). There are at most two orientations

u with locally extremal x since the numerator of dJ(u)
du

is a quadratic polynomial.
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Figure 13: The position of the intersection J(�) of the
�xture row and the extended edge.
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J(u) = X(u) + (H � Y (u))
�X(u)

�Y (u)
(6)

dJ(u)

du
=

2

Z(u)
((u cos(�)� 1)2Q+

(Cy�H+Q sin(�)�cos(2�)R)(1 + u
2)) (7)

3.7 Peg Positions Fi;j;3, Fi;j;4 (Type I Contact)

The main idea is that, even though the interval
ranges were computed with respect to the left jaw, the
di�erential between the x coordinate ranges for Ei;3
and Ei;4 remains valid with respect to the right jaw.
For each combination of rows, Ri;3;l, Ri;4;l0 , valid peg
positions correspond to discrete values (k�column(k 2

I)) in this di�erential range: f< J
Ri;3;l

Ei;j;3
>g � f� <

J
Ri;4;l0

Ei;j;4
>g (refer Figure 14).
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Figure 14: f< JR >g denotes the range of x coor-
dinates of points on an edge intersecting a modular
row.

3.8 Peg Positions Fi;j;3, Fi;j;4 (Type II Contact)

For Type II situations, Fi;j;3 positions are on �xture
rows Ri;3;l at discrete points (k�column(k 2 I)) within
< JRi;3;l >. Fi;j;4 positions on the right jaw are the
leftmost positions on the �xture rows intersecting the
remaining edge segment Ei;4 when the object contacts
the �rst three pegs (there are at most four such poses).



4 Computing Poses Such That Edge
Segments ~Ei Contact Pegs ~Fi;j

This section describes a technique for computing
the object's poses such that edge segments ~Ei simulta-
neously contact the pegs ~Fi;j (refer Figure 15). The
contact constraints are reformulated algebraically in
order to compute the object's poses. The poses are
computed using the relative displacements between
contact points on the same �xture; there are two such
relative displacements which constrain the placement
of the part. Each relative displacement speci�es a
curve in (�; y) con�guration space where (�; y) repre-
sents the object after a rigid two-dimensional transfor-
mation of rotation by � and translation by y parallel
to the y-axis; x is assumed to be zero since both jaws
can translate freely along the x axis.

In both Type I and Type II situations, there are
two independent relative displacements between con-
tact points: in Type I situations, each jaw's pair of
contacts supplies a relative displacement constraint,
and in Type II situations, any two pairwise combi-
nation of contacts on the triple-contact jaw supply
two relative displacement constraints. There are at
most four poses for Type I contacts and two poses
for Type II contacts. The con�gurations which satisfy

Both jaws can translate freely

Figure 15: Determine pose such that edge segments ~Ei
simultaneously contact pegs ~Fi;j on �xture jaws which
freely translate along the x axis.

the relative displacement constraints are described by
algebraic curves. These two curves, called constant
extended intersection di�erence (C) curves (refer sec-
tion 4.3), are de�ned in terms of extended intersection
di�erence functions (refer section 4.2), which, in turn,
are de�ned in terms of extended intersection functions
(refer section 4.1). Intersecting the C curves is rel-
atively uncomplicated because the curves are of the

special form: y = g(t)
(1+t2)2 (t = tan( �2 )).

4.1 Extended Intersection Functions I(�; y)

Extended intersection functions, I(�; y) alge-
braically describe the x coordinate of the extended
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Figure 16: Each relative displacement between two
contacts on the same jaw speci�es a curve C in (�; y)
con�guration space. The contact pose is the intersec-
tion of these two curves.

intersection between a horizontal �xture row and a
corresponding edge segment E� rotated around the
reference point by � and translated by y (refer Fig-
ure 17). I�(�; y) is de�ned in equations ( 8) and ( 9)
in terms of �, y, R�, D�, �, and t (t = tan( �2 )). � is
the orientation normal to E� pointing inward towards
the object's reference point. R� is the minimum dis-
tance from the reference point to E�, and D� is the
di�erence in y coordinates between the modular row
R� and the reference point.
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Figure 17: Model used to compute extended intersec-
tion I(�; y) between edge segment E� and �xture row
R�.

I�(�; y) =
R� + (y �D) sin(�+ �)

cos(�+ �)
(8)

=
R� + (y �D)(sin � cos�+ cos � sin�)

cos � cos�� sin � sin�

I�(t; y) =
y(�t2 sin�+ 2t cos�+ sin�)

(1� t2) cos�� 2t sin �
+ (9)

t2(R� �D sin �)� 2tD cos�+ R� +D sin �

(1� t2) cos�� 2t sin �

4.2 Extended Intersection Di�erence Functions
�I�;�(�; y)

Extended intersection di�erence functions are de-
�ned in equations equations ( 10) and ( 11).

�I�;�(�; y) = I�(�; y)� I�(�; y) (10)



�I�;�(t; y) =
y((1� t2) sin�+ 2t cos�)

(1� t2) cos�� 2t sin �
+

t2(R� �D� sin �)� 2tD� cos�+R� +D� sin �

(1� t2) cos�� 2t sin�
�

(
t2(R� �D� sin �)� 2tD� cos � + R� +D� sin �

(1� t2) cos � � 2t sin �
+

y((1 � t2) sin � + 2t cos �)

(1 � t2) cos� � 2t sin �
) (11)

4.3 Constant Extended Intersection Di�erence
Curves C(�; y)

C�;� curves include (necessary, but not su�cient)
con�gurations (�; y) satisfying the constraint that the
x coordinates of the intersections are separated by
exactly ��;�, and are de�ned by the zero sets of
C�;�(�; y) functions (refer equations ( 12), ( 13)). An
algebraic expression is formed by cross multiplying the
denominators of (�I ��) (Q(�; y)).

C�;�(�; y) = (�I�;�(�; y)���;�)Q(�; y) (12)

C�;�(t; y) = y(1 + t
2)2 sin(�� �) (13)

���;�((1�t
2) cos��2t sin �)((1�t2) cos ��2t sin �)+

((1�t2) cos��2t sin �)((1+t2)(R��D� sin �)�2tD� cos�)

((1�t2) cos��2t sin�)((1+t2)(R��D� sin �)�2tD� cos �)

4.4 Intersecting C Curves

This section describes the computation of the ori-
entations t of intersections of constant extended in-
tersection di�erence curves (without loss of generality,
C�;�(t; y) = 0, C�I�;
(t; y) = 0). Observe that the ra-
tio between the y contributions of these curves remains
constant over all t. Let C�y refer to the y-independent
monomials of C. Cross multiplying the y-dependent
and y-independent components of C�;� and C�;
 (refer
equation( 15)) and dividing out y(1+ t2)2, produces a
quartic expression which can be solved numerically.

sin(�� �)y(1 + t
2)2 +C

�y

�;�(t)
| {z }

C�;�

= 0

= sin(
 � �)y(1 + t
2)2 + C

�y

�;
 (t)
| {z }

C�;


(14)

sin(�� �)C�y

�;
(t)� sin(
 � �)C�y

�;�(t) = 0 (15)

The y translation, as a function of t is computed in
three steps: First, rotate the edge segments around
the reference point by � (� = 2arctan t), then for each
edge segment, compute the line segment of translation
vectors which would translate the edge onto the peg
position, and �nally, intersect the translation lines for
all of the same-jaw peg positions. The y component
of both jaws' intersections (x; y) should match. �,
the jaw spacing is equal to di�erence between the x

coordinates of the intersections.

5 Conclusion

In this report, we described a complete, e�cient
algorithm for designing �xture vice con�gurations for
two and a half dimensional objects. The algorithm
consists of two routines: enumerating all peg con�gu-
rations simultaneously contacting four edge segments,
and, for each such con�guration, computing the con-
tact points and pose of the object. This type of algo-
rithm is a prerequisite for a multi-step �xture design
planner, because such a planner must examine all of
the valid con�gurations to �nd the best one.
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