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Abstract. This article de�nes input perturbations so that an algorithm designed under certain restric-
tions on the input can execute on arbitrary instances. A syntactic de�nition of perturbations is proposed and
certain properties are speci�ed under which an algorithm executed on perturbed input produces an output
from which the exact answer can be recovered. A general framework is adopted for linear perturbations,
which are e�cient from the point of view of worst-case complexity. The deterministic scheme of Emiris
and Canny [1] was the �rst e�cient scheme and is extended in a consistent manner, most notably to the
InSphere primitive. We introduce a variant scheme, applicable to a restricted class of algorithms, which
is almost optimal in terms of algebraic as well as bit complexity. Neither scheme requires any symbolic
computation and both are simple to use as illustrated by our implementation of a convex hull algorithm in
arbitrary dimension. Empirical results and a concrete application in robotics are presented.

Key words. Input degeneracy, e�cient perturbations, algorithm implementation, general-dimensional con-
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1 Introduction

Algorithms in computational geometry typically make certain assumptions about the input. The
treatment of cases violating these assumptions is tedious and intricate, thus seldom included in
the theoretical discussion, yet it remains a nontrivial matter for implementors. For instance, in
constructing convex hulls in d dimensions, certain algorithms suppose that no d + 1 points lie on
the same hyperplane. A sweep-line algorithm in the plane may even require that no two points are
covertical. This article describes a general approach to eliminate the need of explicitly dealing with
some of these special cases.

The �rst contribution of this article is a syntactic de�nition of perturbations as curves rooted
at input instances. A limiting process is employed to de�ne perturbed instances, thus conforming
to the intuitive notion of in�nitesimal change. We discuss how to recover the answer to the original
problem from the output on perturbed input, either directly or after some case-speci�c postpro-
cessing. Some general techniques for designing and evaluating e�cient perturbations for a wide
class of geometric primitives are suggested.

The main drawback of previous approaches [2, 3] is that they increase the worst case asymptotic
complexity by an exponential factor in the space dimension, which makes them unattractive for
algorithms in general dimension. The deterministic perturbation of Emiris and Canny [1] was the
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�rst e�cient scheme in the sense that the algebraic and bit complexity overheads are respectively
at most logarithmic and polynomial in the dimension. It was applied to the Orientation and
Transversality primitives. The second contribution of this article is to extend the applicability of
this scheme to the InSphere and Ordering primitives. Furthermore, we propose a new variant that
applies to Orientation, Transversality as well as Ordering and reduces the bit complexity overhead
to a logarithmic factor in the dimension.

In addition to their e�ciency, our schemes require no symbolic computation. For rational
inputs, almost all arithmetic can be carried out over a �nite �eld and all intermediate quantities
grow in a quasi-linear fashion with the dimension. We discuss modular arithmetic which is a very
e�cient way to carry out exact integer computation. We also explain how the requirement on exact
computation does not exclude 
oating-point inputs. Both schemes are simple to implement. To
illustrate this claim, our third contribution is an implementation of the Beneath-Beyond algorithm
that uses the second scheme to construct the facet structure of convex hulls in arbitrary dimension
and to compute their volume. The issue of postprocessing is closely examined in this context and
experimental results are reported. Finally, we sketch an application to computing the pose of
industrial parts falling on a conveyor belt.

This article includes, in �nal form, certain results presented in [4]; it is organized as follows. The
next section de�nes the computational model, the problem at hand, the notion of perturbations and
how they are implemented and examines some positive and negative consequences of applying them.
Section 3 is a comparative study of previous work on handling degeneracies. Linear perturbations
are discussed in Section 4 where su�cient conditions for establishing the validity of particular
schemes are explored. Section 5 discusses general methods for evaluating primitives on perturbed
input as well as more e�cient techniques for speci�c classes of primitives. The two perturbation
schemes of interest are shown to be valid with respect to four common primitives in Section 6 and
the complexity claims are demonstrated. Section 7 presents our implementation of the Beneath-
Beyond algorithm and a speci�c application to robotics. The conclusion summarizes the main
results and suggests some open questions.

2 De�nitions

Our approach is largely based on those of Edelsbrunner [2] and Yap [3]. The formalization of
Emiris and Canny [1] focuses on the desired e�ects of the perturbation. The current setting, �rst
introduced by Seidel [5], o�ers a syntactic de�nition of perturbations. All approaches, however,
are essentially equivalent and lead, for a given set of primitives, to the same requirements on the
perturbation schemes.

2.1 Computational model

Our model is the real Random Access Machine (RAM) of [6]. The input is organized as a set of n
vectors in Rd , where n � d > 0 and the i-th vector is xi = (xi;1; : : : ; xi;d) for 1 � i � n; 1 � j � d.
The four basic operations f+;�;�; =g are assumed to be exact between real numbers, where the
operands are constants, input quantities or have been computed previously. Branching occurs at
tests against zero of an input or computed quantity and is three-way, depending on the sign of the
tested value.

The set of arithmetic operations computing a branch expression together with the corresponding
test is referred to as a primitive. A typical primitive used in sorting, called Ordering, is the
comparison of coordinates. The branch polynomial is f = xij � xkj for 1 � i 6= k � n. Another
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is the Orientation primitive. For the planar convex hull problem the branch polynomial is the
determinant of

�3 =

2
64
1 xi1;1 xi1;2
1 xi2;1 xi2;2
1 xi3;1 xi3;2

3
75

where xi1 ; xi2 ; xi3 are distinct input points. This test decides on which side of the line (xi1 ; xi2)
the third point xi3 lies. More primitives, including InSphere, are discussed below. The real RAM
produces a unique output for any given input instance. We refer to a program, which is a sequence
of instructions that implements a speci�c algorithm, and to an execution path in the program or
algorithm, which is the sequence of instructions executed on a particular input instance.

We make use of two complexity measures. Under the algebraic model the total cost of a program
equals the number of instructions in the longest execution path. More realistically, we must keep
track of the operands' bit size: under the bit model only the input, output and branching instructions
are assigned unit cost. For integers of size O(b), addition and subtraction requireO(b) bit operations
while multiplication and division require O(b log b log log b) bit operations [7]. We shall use M(b) =
O(b log b log log b) as an upper bound on the bit complexity of any arithmetic operation between
any two integers of size O(b). The total bit complexity of a real RAM program equals the sum of
the costs of every instruction on an execution path, maximized over all paths.

It must be underlined that exact computation is indispensable in any implementation of our
methods, since resolving the special, or degenerate, cases relies on having no roundo� error. We later
discuss modular arithmetic which provides an e�cient approach for carrying out exact arithmetic
by using integers of arbitrary precision in a minimum number of operations. It is advisable to use
double precision 
oating point numbers to store �xed-size integers, since they provide 53 bits of
storage instead of the 32 bits of standard integers. Moreover, double arithmetic operations are
faster on most modern computer architectures.

Exact arithmetic does not exclude 
oating-point inputs. In this case we need to convert the

oating-point data to integer values by multiplying by an appropriate power of 10. If the input
parameters contain more than 32 bits we have to use larger precision integers. Again, most of the
computation is carried out over �xed-precision integers.

2.2 Perturbations

Geometric problems are de�ned in terms of maps associating any given input instance to a unique
output instance.

De�nition 1 A problem mapping is a mapping � : X ! Y between topological spaces. The input
space X = Rnd has the standard euclidean topology. The output space Y is, generally, the product
D�R of a �nite space D with the discrete topology and the direct union R of real spaces with the
euclidean topology.

A recurrent example will be the Convex Hull Volume (CHV) problem, which maps point sets
to the real number expressing the volume of their convex hull. The output space is R with the
euclidean topology, and the mapping is continuous.

Computational geometry is concerned with the e�ective computation of problem mappings.
Often, however, the implementation of algorithms is impeded by certain conditions imposed by
the algorithm designer on the input. Typically, \special" cases such as those where the mapping
is discontinuous are assumed not to occur. To illustrate, consider the planar Convex Hull Face-
Structure (CHF) problem where, given a point-set, the sequence of hull edges must be constructed.
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The output topology is the direct union of real euclidean topologies, each corresponding to a
distinct combinatorial structure of the polygon. A variety of algorithms, including Beneath-Beyond,
assume that three points are never collinear. This con�guration represents a discontinuity in this
map because it is arbitrarily close to two input instances which give rise to outputs in disjoint
components and, hence, at in�nite distance. Perturbations supply a mechanism to allow programs
to run and produce meaningful output even if they cannot handle these special con�gurations.

De�nition 2 For any input x 2 X, a perturbed instance of x is a curve x() rooted at x, i.e., the
image of a continuous function x() : R�0 ! X such that x(0) = x. A perturbation scheme Q de�nes
a perturbed instance for every element of X.

For the sake of simplicity, we do not explicitly show the dependence of x() on the choice of Q. The
intuitive notion of perturbations as very small changes to the input is formalized in

De�nition 3 Given a problem mapping � : X ! Y and a perturbation scheme Q, the perturbed

problem mapping � is a mapping from X to Y such that

�(x) = lim
�!0+

�(x(�));

assuming that every such limit exists.

Again, an explicit indication of the dependence of the derived mapping on the perturbation scheme
is foregone.

The goal is that the new problem mapping be de�ned and continuous on a proper superset of
the original domain, thus incorporating some or all of the special instances. We also hope that
implementing an algorithm for � will be easier than explicitly handling all special cases for which
some given algorithm for � is unde�ned. In short, we shall solve � instead of � and then argue
that the output of � can yield enough information to recover the output of � at the same input.
The latter constitutes the postprocessing phase, which is in general nontrivial. However, there is a
restricted yet important case in which postprocessing is super
uous:

Proposition 4 For any perturbation scheme, if mapping � is continuous at x 2 X, then �(x) =
�(x).

This is the case with CHV, discussed in detail in Section 7. Things are less favorable for the
planar CHF problem: given a point set containing subsets of more than two collinear points on
the boundary, the output on perturbed input will contain edges split into more than one segments.
Postprocessing then has to merge these segments by eliminating points in the interior of polygon
edges. This process is analyzed for the general CHF problem in Section 7 and a practical approach
is discussed for the three-dimensional CHF problem. Postprocessing for the problem of polytope
intersection was examined in [8].

2.3 Computing with Perturbations

Given a program � that implements �, the question is how to obtain another real RAM program �
that implements �. For this, � must be modi�ed to be able to run on perturbed instances x(�) and
follow the same branches as if � had an arbitrarily small positive real value. We list the syntactic
changes on � and prove below that the new program correctly implements the perturbed map.

First, all arithmetic operations in � are transformed in order to handle perturbation curves.
Memory locations in � hold univariate functions in � and a postprocessing stage eliminates � from
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the output by some limiting process. The latter depends on the particular problem but we assume
that it is possible. Lastly, every branching operation of � is transformed to a branching operation
that tests the limit of the sign of some �-function: if f is the respective function tested by �, then
the new branch depends on

lim
�!0+

signf(x(�));

where sign(�) is a piecewise constant function with values in f�1; 0;+1g.
Problematic instances always include those where � is discontinuous. In addition, a program

may be unde�ned on other instances, for example two covertical points in the case of a planar
CHF solved by a sweep-line algorithm. All inputs not dealt with by a program can be modeled
by the vanishing of some polynomial in the input. Conforming to the standard viewpoint in the
literature [2, 3, 1] we have

De�nition 5 An input instance is degenerate with respect to some program if and only if it causes
some numerator or denominator polynomial f at a branch to vanish, where f is not identically
zero. Equivalently, an input instance is generic with respect to this program if there is no such
branch polynomial.

Yap [3] distinguishes between problem-dependent degeneracies, i.e., those where � is discontinuous,
and algorithm-induced degeneracies, such as the covertical points for the sweep-line algorithm.

De�nition 6 A perturbation scheme Q is valid with respect to a function f if and only if, for
every input x 2 X, the limit

lim
�!0+

signf(x(�))

exists and is nonzero. Perturbation Q is valid with respect to a set of functions if and only if it
is valid with respect to every function in this set. Q is valid with respect to a given real RAM
program if and only if it is valid with respect to the set of all branch polynomials in the program.

Clearly, under a valid perturbation no degenerate inputs arise, which implies that the zero branches
in a program can be ignored.

Theorem 7 Assume that Q is a valid perturbation scheme for a real RAM program � computing
mapping � and that � is obtained by the transformation at the beginning of this section. Then (i)
� computes the perturbed mapping � and (ii) for x 2 X such that � is continuous, � yields �(x).
Statement (ii) holds if some, or all, of the zero branches of � are removed.

Proof (i) By validity all limits exist, hence � follows the same execution path on x(�) as � would
if � were specialized to an arbitrarily small real positive value. In constructing � we have also
assumed that postprocessing is possible. Then the map � is computed by �. (ii) Proposition 4 es-
tablishes the second assertion. By validity no zero branches are taken in �, therefore these branches
might as well be pruned away. 2

From this theorem, it is clear that the action of perturbations can be thought of as concentrated
at the branches. The main advantage of the perturbation method is that some or all of the zero
branches do not need to be implemented. This brings us to the original problem stated at the
beginning of Section 2.2. We now see how algorithms designed under the hypothesis of non-
degeneracy can be used for solving the perturbed problem mapping, from which postprocessing can
produce the output of �.
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It must be underlined that whenever a given program � is transformed to � to re
ect the
application of some perturbation, all instructions should be changed according to the chosen scheme.
It leads to severe inconsistencies to allow some instructions to be executed as if the perturbation
were not implemented and, similarly, it is a grave error to try to use more than one scheme at
a time. Imagine, for example, that in the planar CHF problem coordinate comparisons are not
transformed under the perturbation, but the Orientation primitive is transformed. Then three
covertical points may be detected to be so by coordinate comparisons, though for the Orientation
test they are not even collinear.

So far we have formalized the notion of valid perturbations as a tool for coping with degenerate
inputs but no concrete guidelines have been presented for their implementation. In later sections
we examine practical ways for establishing validity, propose valid schemes covering some common
geometric primitives and study the issue of e�ciently executing a transformed program.

3 Previous work

The simplest approach in coping with degeneracies is to handle each special case separately, which is
tedious for implementors and unattractive for theoreticians, though some recent work re-examines
this common belief [8, 9].

Dantzig's [10] symmetry breaking rules in Linear Programming are regarded as the precursor
of current systematic perturbations. The idea is to perturb the right-hand side of every constrain
by an in�nitesimal quantity that depends on the index of this constrain. The i-th constrain then
becomes

nX
j=1

ai;jxj + xn+i = bi(�) = bi + �i;

where x1; : : : ; xn are the original variables, each xi for i > n is a slack variable and the ai;j and bi
are constants.

Edelsbrunner and M�ucke generalize in [2] a technique called Simulation of Simplicity (SoS for
short), already presented in [11], which re�nes the above method. Every input coordinate xi;j is
perturbed into

xi;j(�) = xi;j + �2
i��j

;

where � > d and d is the dimension. The perturbation is in�nitesimal due to symbolic variable �;
it is also conceptual in the sense that the computation remains numeric. Raising � to such a high
power intuitively distinguishes between any two coordinates, which allows SoS to be applied to a
wide range of geometric primitives, including the determinantal ones examined in this paper. One
exception is an inconsistency in the case of the InSphere primitive discussed in Section 6.3.

The main drawback of SoS is that it incurs an overhead to the algebraic complexity of the
algorithm which is exponential in d in the worst case. Speci�cally, deciding the sign of a d � d
perturbed determinant, although rather fast on the average, requires the calculation of 
(2d)
minors in the worst case. We indicate how this bound is established for the case of the Orientation
primitive. In [2] the Orientation primitive on perturbed input is reduced to the evaluation of a
sequence of minors of the original d � d matrix. Each minor that may have to be evaluated is
associated with a vector of the form (v1; : : : ; vd�2), where vi 2 f1; : : : ; dg and i < j ) vi � vj . A
simple counting argument now implies the lower bound. For other primitives a similar argument
works.

Yap [3] deals with the more general setting in which branching occurs at arbitrary rational
expressions and proposes a method which is equivalent to an in�nitesimal perturbation [12]. Re-
cently, it has been extended to analytic test functions [5]. For input variables x = (x1; : : : ; xN ),
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the scheme considers a total ordering on all power products of the form

w =
NY
i=1

xeii ; ei � 0:

This ordering, denoted by �A, is admissible if, for all power products w;w0; w00,

1 �A w and w �A w0 ) ww00 �A w0w00:

If w1 �A w2 �A : : : is an admissible ordering of power products larger than one, then each
polynomial f(x) at the numerator or denominator of a branch expression is associated with the
in�nite list

S(f) = (f; fw1 ; fw2 ; :::)

where fwk
is the partial derivative of f with respect to wk. The sign of f is taken to be the sign of

the �rst polynomial in S(f) with a nonzero value, which can always be found after a �nite number
of evaluations. The worst case complexity to evaluate this new test is exponential in N , although
the average case complexity is signi�cantly lower. Consider sparse N -variate polynomials with
degree in each variable bounded by m. If all variables are of the same maximum degree then f has
at least mN partial derivatives, and if all of them must be evaluated then the algebraic complexity
is 
(mN ). When the input consists of n d-vectors the complexity of evaluating the determinantal
tests of this article is exponential in d.

Each power product w is uniquely de�ned by the vector e = (e1; : : : ; eN ) of exponents. De�ning
the admissible ordering reduces to a �xed ordering of the product vectors of some N � N matrix
with each vector e. Choosing the matrix essentially picks the direction of perturbation, and in this
sense this scheme gives a controlled perturbation. Since we are free in choosing this matrix, it is
possible to simulate either SoS or any of our schemes presented below.

Very recently, we were informed by Michelucci of his own perturbation scheme, applicable to
arbitrary rational expressions [13]. It is reminiscent of Yap's but allows some control on the direction
in which points are perturbed as well as branching functions on derived quantities. Its drawbacks
are the high computational overhead and the need of language capabilities such as streams in order
to avoid creating a formidable implementation task.

Dobrindt, Mehlhorn and Yvinec proposed an e�cient scheme speci�cally for coping with de-
generate intersections between a convex and a general polyhedron in three dimensions [8]. Since
the vertices of the convex polyhedron are guaranteed to be perturbed in a speci�c direction with
respect to the given facets, this is another instance of a controlled perturbation. Another merit of
this work is that it discusses postprocessing in detail in order to recover the exact solution.

A recent account of postprocessing and its implementation di�culties for convex hulls in general
dimension can be found in [14]. This paper also formalizes the use of modular arithmetic as an
e�cient way of implementing exact arithmetic, and shows how randomization can further reduce
computational cost. This method is brie
y sketched in section 5.

Knuth [15] provides a nice treatment of the planar case, setting the problem of Delaunay trian-
gulations and CHF in combinatorial terms, which are related to oriented matroids. The examined
primitives are the two-dimensional restrictions of Ordering and InSphere. The proposed mecha-
nism for avoiding coincident, collinear and cocircular point sets is equivalent to an in�nitesimal
perturbation, reminiscent of SoS.

A structural perturbation for a motion-planning algorithm, in which the input objects are
the semi-algebraic sets describing the obstacles, is given by Canny in [16]. He uses towers of
in�nitesimals to eliminate degeneracies while preserving essential properties of the sets, namely
emptiness and cardinality of connected components.
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Emiris and Canny presented in [1] an in�nitesimal perturbation that constitutes the �rst ef-
�cient scheme, inspired by the SoS method. For geometric algorithms, every coordinate xi;j is
deterministically perturbed into

xi;j(�) = xi;j + � ij ; (1)

where � is a symbolic in�nitesimal. The perturbation applies to the Orientation and Transversality
primitives with worst case complexity overheads O(log d) and O(d1+�) under the algebraic and
bit models respectively and requires no symbolic computation; � is an arbitrarily small positive
constant. These bounds are obtained by assuming that the unperturbed program implements sign
determination by determinant evaluation and that a constant fraction of input points are distinct.

For a wider class of algorithms with branching at arbitrary rational expressions randomization
is traded for e�ciency [1]. The i-th perturbed point is

xi(�) = xi + �ri; 1 � i � n;

where ri is a random integer uniformly chosen from a su�ciently large interval R � Z. Let D
denote the maximum degree in the input variables of any polynomial in the program, let �(n; s) be
the program's bit complexity and s an upper bound on the size of the input coordinates. Then the
probability that the scheme fails to eliminate some degeneracy is bounded by D�=#R, where #R
denotes the cardinality of R and � < �(n; s) is the number of branch polynomials. The approach
here is of the Las Vegas type because the fact that some degeneracy is not removed can be detected
deterministically in which case the program is restarted. The algebraic complexity overhead is
O(D1+�) and the worst case bit complexity overhead is O(�2+�(n; s)), for an arbitrarily small
� > 0 accounting for the polylogarithmic factor.

4 Linear Perturbations

The e�ciency of scheme (1) is essentially due to the linearity of the �-factor. This section weakens
the requirements on validity for linear perturbations and provides a powerful validity criterion for
a speci�c class of linear schemes.

Linear perturbations are of the following type:

xi(�) = xi + �bi; 1 � i � n; (2)

where xi = (xi;1; : : : ; xi;d) and bi = (bi;1; : : : ; bi;d) 2 Rd are the i-th input and perturbation vectors
respectively. Let f(x1; : : : ; xn) be any polynomial in n vector variables; its initial form is a homo-
geneous polynomial I(f) in the same variables, equal to the sum of all terms in f of maximum
total degree. For homogeneous polynomials f = I(f).

Theorem 8 Let g(x1; : : : ; xn) = I(f) be the initial form of f . For linear perturbation (2) to be
valid with respect to polynomial f , it su�ces that g(b1; : : : ; bn) 6= 0.

Proof Consider f(x(�)) as a univariate polynomial in �. From De�nition 6, it is required that
f(�) never vanishes on perturbed input. If at least one coe�cient is never zero, the polynomial is
not identically zero and its zero set does not include all real numbers. The highest-order coe�cient
in f(�) is g(b1; : : : ; bn) 6= 0, therefore the zero set of f(�) is not fully dimensional which implies that
f(�) has a �nite number of roots. It su�ces now to assume that � takes real values smaller than
the minimum positive root of f(�). 2
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The signi�cance of this theorem is twofold. First, the validity requirement has to be tested only
against the initial form of the branch polynomial. More importantly, the problem of designing an
e�cient perturbation scheme is reduced to �nding a single set of input vectors b1; : : : ; bn on which
the initial forms of all branch polynomials do not vanish. In practice, one may use known point
sets such as points on the moment curve, employed by scheme (1), or those de�ned by the rows of
a Cauchy matrix, which would provide an alternative to scheme (1). In general, though, de�ning
perturbation vectors b1; : : : ; bn is a hard problem, a stronger version, in fact, of the zero avoidance
problem [17].

This theorem can be generalized to nonlinear perturbations.

4.1 A Validity Criterion

We establish a rather general criterion for showing validity. This criterion was motivated by
the application of scheme (1) to the InSphere primitive. This primitive decides, given points
xi1 ; : : : ; xid+2 2 Rd , whether xid+2 lies in the interior of the hypersphere de�ned by the �rst d + 1
points. InSphere is shown in Section 6.3 to reduce to testing the sign of a (d+2)�(d+2) determinant
therefore validity follows by the nonsingularity of matrix

Wd+2 =

2
66664

1 i1 : : : id1
Pd

j=1 i
2j
1

1 i2 : : : id2
Pd

j=1 i
2j
2

...
...

...
...

1 id+2 : : : idd+2
Pd

j=1 i
2j
d+2

3
77775
:

The proof requires Descartes' rule of sign which we state here for completeness. We consider a
univariate polynomial u1+u2x+ � � �+uNx

N+1 in canonical form, i.e., ui is the nonzero coe�cient of
the i-th smallest power of the variable. The number of sign variations of the polynomial's nonzero
coe�cients u1; : : : ; uN is the number of consecutive pairs (uk; uk+1), 1 � k < N , such that the
product ukuk+1 is negative.

Proposition 9 (Descartes' Rule of Sign) [18] The number of sign variations of a polynomial's
nonzero coe�cients exceeds the number of positive zeros, multiplicities counted, by an even non-
negative integer.

Proposition 10 Matrix Wd+2 is nonsingular for distinct positive ij , 1 � j � d+ 2.

Proof If Wd+2 is singular then there is a nonzero vector (q1; : : : ; qd+2) in the kernel of the ma-
trix. Therefore the y-polynomial

Pd
j=0 qj+1y

j + qd+2
Pd

j=1 y
2j has at least d + 2 distinct positive

zeros, namely i1; : : : ; id+2. The polynomial has also at most d+1 sign variations, which contradicts
Descartes' rule. 2

Here we generalize the discussion to include potentially more primitives in addition to InSphere.
The perturbation is restricted to the form:

xi;j(�) = xi;j + ��

j
i ; 1 � i � n; 1 � j � d; (3)

with 
 = (
1; : : : ; 
d) 2 Zd �xed and bi = (�
1i ; : : : ; �
di ) as the i-th perturbation vector, where
�i 2 R for 1 � i � n. For a general polynomial f(w1; : : : ; wt), the support of f , denoted supp(f),
is the set of integer exponent vectors that correspond to nonzero coe�cients:

A = supp(f) � Z
t () f =

X
a2A

caw
a; ca 6= 0
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where, for exponent vector a = (a1; : : : ; at) 2 Zt, we write wa =
Qt

k=1w
ak
k .

To generalize the class of primitives examined, we let the entries of the determinant be ar-
bitrary d-variate polynomials fj. Consider t polynomials each on t sets of variables, fj(xi) =
fj(xi;1; : : : ; xi;d), where t � n, 1 � i; j � t. Let Aj = supp(fj) � Zd. If # denotes cardinality, let
the union of all singleton supports be U =

S
#Aj=1

Aj . Now de�ne

Bj = Aj n U � Aj 1 � j � t:

Hence Bj = ; if #Aj = 1. Let the set of inner products of exponent vectors for each Bj with a
�xed vector 
 = (
1; : : : ; 
d) 2 Zd be

Cj = fh
; ai 2 Z j a 2 Bjg; 1 � j � t:

Each Cj has a minimum and maximum element denoted minCj and maxCj respectively. We
restrict attention to primitives expressed as determinants of order t, with the (k; j)-th entry equal
to fj(xk). By Theorem 8 we have to examine the determinant that has fj(bk) as the (k; j)-th entry.

Theorem 11 Suppose that �i is positive and distinct for every 1 � i � n in the perturbation
scheme (3). Moreover each polynomial fj has coe�cients of the same sign and, possibly after
reindexing, the nonempty sets Cj are ordered so that, for every j > 1, maxCj�1 < minCj �
maxCj < minCj+1. Then the t� t matrix with (i; j)-th entry fj(bi) is nonsingular.

The proof of the theorem relies on the technical lemma below. Intuitively, we consider t poly-
nomials that correspond to the columns of the matrix. The hypothesis of the theorem separates
the truncated supports, i.e., the subsets obtained after ignoring all elements in singleton supports.

Technical Lemma 12 If q1; : : : ; qt are any real values, y is a real variable, 
 2 Zd is �xed and poly-
nomials fj satisfy the hypothesis of Theorem 11, then polynomial F (y) =

Pt
j=1 qjfj(y


1 ; : : : ; y
d)
has less than t positive real roots.

Proof By expanding fj(y

1 ; : : : ; y
d) =

P
a2Aj

cj;ay
h
;ai, the univariate polynomial F (y) can be

written

F (y) =
tX

j=1

qj
X
a2Aj

cj;ay
h
;ai =

tX
j=1

X
a2Aj

qjcj;a y
h
;ai =

X
j:Bj 6=;

X
a2Bj

qjcj;a y
h
;ai +

X
j:#Aj=1

X
a2Aj

q0jcj;a y
h
;ai:

The expression relies on the fact that the supports Aj are nonempty and are partitioned between
non-singletons in the �rst summand and singletons in the second. Coe�cients q0j in the second
summand result from the contribution of a 2 U \ Aj for which Bj 6= ;, in other words a 2
Aj n Bj � U . After manipulating the �rst summand we obtain

F (y) =
X

a2[Bj

0
@ X
j:a2Bj

qjcj;a

1
A yh
;ai +

X
j:#Aj=1

X
a2Aj

q0jcj;a y
h
;ai:

Now partition the �rst summand into sums of monomials whose exponents belong in a certain Cj .
Since all Bj are distinct and by hypothesis the Cj are ordered, the coe�cient of y

h
;ai is a single
product qjcj;a. Furthermore, there is no sign variation among the coe�cients of each sum because all
cj;a for a �xed j have the same sign. Hence, in the �rst summand the number of distinct coe�cients
is at most the number of nonempty Bj . This implies that the number of distinct coe�cient signs
is also bounded by the number of nonempty Bj.
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In the second summand the total number of coe�cients is at most equal to the number of
singleton supports. Therefore, there exist at most t distinct coe�cient signs in F (y), hence the
number of sign variations is at most t� 1. An application of Descartes' rule completes the proof.
2

Proof of Theorem 11 If the matrix is singular, then there must exist a nonzero real vector
(q1; : : : ; qt) in the kernel of the linear transformation of the matrix, therefore the univariate poly-
nomial F (y) from Lemma 12 has a distinct positive root �i for all 1 � i � t. The existence of t
distinct positive roots contradicts Lemma 12. 2

For the InSphere primitive and matrix Wd+2, t = d + 2, f1 = 1, fj(bk) = ijk for 2 � j � d + 1
and fd+2(bk) =

Pd
l=1 i

2l
k where 1 � k � d+ 2. Then Proposition 10 follows as a corollary.

5 Evaluation of Branch Expressions

Some algebraic techniques are presented for the e�cient evaluation of primitives in perturbed
programs. An important consequence of these techniques is that no computation in the derived
program need involve the in�nitesimal variable. Thus, although the perturbation is symbolic, all
arithmetic is numeric.

We �rst discuss interpolation as a general method for computing univariate polynomials in �
from their values. The only assumption here is that the total degree � of each polynomial is known.
The �rst step is to obtain a sequence of interpolation pairs. These are pairs of � specializations,
usually at distinct primes, and the respective values of the polynomial. If � + 1 interpolation pairs
are available, dense interpolation can be used to compute the coe�cients in O(� log2 �) arithmetic
operations [7].

If, furthermore, there is an a priori bound T on the number of nonzero terms that is signi�cantly
lower than the maximum number � + 1, then sparse interpolation is preferable. There exists
a probabilistic algorithm with algebraic complexity O(��1+�) that requires O(��) interpolation
pairs, where � � T is the actual number of nonzero terms in the polynomial and � is any positive
constant. A deterministic algorithm has complexity O(T 2+� log �) and requires 2T interpolation
pairs, where � again accounts for the polylogarithmic factor. Both algorithms are surveyed in [17].

Traditionally, the cost of evaluating the unknown polynomial is of minor concern in the context
of the interpolation problem, yet here this cost must be assessed. In general, computing one
interpolation pair takes time proportional to the complexity of evaluating the polynomial. For
the important case of determinantal tests, i.e., tests expressed as determinants, the complexity
of the evaluation phase dominates the overall complexity. The rest of this section concentrates
on determinantal tests of order t and develops more e�cient ways for the combined problem of
evaluation and sign determination.

Let MM(t) = O(t2:376) [19] be the algebraic complexity of multiplying two t � t matrices and
I (resp. It) the identity matrix (of order t). The total cost of dense interpolation is O(�MM (t)),
where � � t. An improved technique for interpolating determinants whose entries are higher-degree
polynomials in several variables appears in [20]. Here we present a near-optimal technique for the
case in which the entries are univariate polynomials.

Given t � t matrix A(�) with polynomial entries in a single variable �, we can express it as a
matrix polynomial

A(�) = Ar�
r +Ar�1�

r�1 + � � �+A1�+A0 (4)

where r is the maximum degree in � of any matrix entry. If Ar is singular the approach of [21] can

11



be applied; in the current context Ar is always nonsingular. Then we premultiply both sides by
A�1
r to obtain

A�1
r A(�) = I�r +A�1

r Ar�1�
r�1 + � � � +A�1

r A1�+A�1
r A0:

The determinant of the right-hand side equals [22] the characteristic polynomial of

C =

2
6666664

0 It 0 � � � 0
0 0 It � � � 0
...

...
...

...
0 0 0 � � � It

�A�1
r A0 �A�1

r A1 �A�1
r A2 � � � �A�1

r Ar�1

3
7777775
:

This discussion reduces the sign determination of a univariate matrix to a matrix inversion and a
characteristic polynomial computation.

Theorem 13 Let A(�) be a matrix of order t, whose entries are linear univariate polynomials in �;
then A(�) = A1�+A0, where A0 and A1 are numeric matrices. If A1 is nonsingular, determining the
sign of det(A(�)) can be reduced to computing determinant detA1 and the characteristic polynomial
of matrix �A�1

1 A0.

Proof By the nonsingularity of A1 we can write A(�) as

A(�) = (�A1)
�
�I��A�1

1 A0

�
:

If we represent sign with a value in f�1; 0;+1g, then the sign of detA(�) is the product of the
signs of detA1 and det(�I� � A�1

1 A0) multiplied by (�1)t. The last determinant is simply the
characteristic polynomial of �A�1

1 A0. 2

A discussion of modular arithmetic is in order here because, in addition to being a common
method for conducting arithmetic on computers, it is also the fastest with respect to bit complexity
for evaluating the perturbed tests. Recall that the perturbation method requires exact computation;
modular arithmetic allows us to carry most of the computation over �xed-precision integers. For
this we may use double precision 
oating point numbers which provide 53 bits for storing an integer.
Besides the classical application of modular arithmetic to integer arithmetic, it can be used with
rational data with the same asymptotic complexity [23].

The basic approach is as follows. First the given quantities are mapped to their residues
modulo a set of primes, then the required computation is performed within each �nite �eld de�ned
by every one of these primes and, lastly, the true answer is computed by the results in each �nite
�eld. The last step relies on the Chinese Remainder Theorem. In order for the entire process to be
deterministic, a bound on the value of the �nal answer must be known. This is used to calculate
the number of di�erent �nite �elds.

Let k denote the number of �nite �elds Zp, for distinct primes p, necessary to carry out a
particular computation. The �rst and third stage have each bit complexity O(M(k) log k). The
middle stage is the actual computation within each Zp and its bit complexity is k times the algebraic
complexity of this computation. All primes p have constant bit size, independent of the size of the
answer. We have made the implicit assumption that a su�ciently long list of primes is available at
the beginning of the computation and that obtaining p from the list is a constant-time operation.
Both hypotheses are easy to guarantee by using some upper bound on the input size and by storing
an array of primes.

12



In practice, randomization is traded for e�ciency in determining the number k of �nite �elds
in a dynamic fashion. Namely, at the end of every �nite �eld computation, we reconstruct the
answer with respect to the information gathered so far. When few primes have been used, the
reconstructed answer changes with every new residue. But once enough �nite �elds have been used
the true answer is obtained and, of course, does not change. When the reconstructed answer is
stable for two or three consecutive �nite �elds we may assume, with very high probability, that the
true answer has been calculated. Typically this happens well before the worst case number of �nite
�elds has been used.

Corollary 14 The algebraic complexity of computing det(A1�+A0) is O(MM(t) log t), where t is
the order of matrices A0 and A1. Let s be the maximum bit size of any entry in A1 and A0. Then
the bit complexity of computing the above determinant is O((ts)1+� + tsMM(t) log t), for some
arbitrarily small positive constant �.

Proof The operations required are a matrix inversion, a matrix multiplication, calculation of a de-
terminant and computation of the coe�cients of a characteristic polynomial. Each takes O(MM(t))
time, except from the last step which takes O(MM(t) log t) time, for arbitrary matrices, due to an
algorithm by Keller-Gehrig [24]. To establish the bit complexity bound, the transformation of The-
orem 13 is used. The bit size of the coe�cients of the �-polynomial representing the determinant
is O(ts) since the original matrix entries have size s and its order is t. Hence modular arithmetic
may be used over k = O(ts) �elds. 2

6 Some Common Primitives

This section deals with speci�c perturbation schemes for certain common determinantal primitives,
namely with extending the application of

xi;j(�) = xi;j + � ij (1)

to Ordering and InSphere and with a more e�cient variant that optimizes the bit size of the
perturbation quantities:

xi;j(�) = xi;j + �(ij mod q); 1 � i � n; 1 � j � d; (5)

where q is the smallest prime that exceeds n. The bit size of the perturbation quantities is bounded
by log n, which is optimal, since there must be at least n distinct such quantities.

We make two assumptions in estimating the complexity of the original program. First, that
sign determination of determinants is implemented by a determinant calculation. If some cheaper
way was employed to �nd out the sign [25] the overhead would increase roughly by a linear factor
in d. Second, we assume that the number of distinct input parameters is a constant fraction of n.
Hence, if s denotes an upper bound on the bit size of the input data, s = 
(log n).

We place the emphasis on designing e�cient valid perturbations from a computational complex-
ity point of view. The comparison on complexities is carried out between the worst case complexities
of programs and their perturbed counterparts. This encourages the design of schemes e�cient for
the almost-generic cases, as opposed to very special cases. This is not an artifact of our schemes
but rather an inherent property of the perturbation method: by reducing arbitrary instances to
the generic treatment, special characteristics cannot be exploited. As a consequence, the perturbed
output and hence the complexity of the perturbed program are not particularly sensitive to the
complexity of the exact answer. For instance, given n coincident points as input to an algorithm
solving the CHF problem, the exact output is a single point whereas the perturbed output is a
polytope with nbd=2c facets. See [9] for a discussion of limitations of the perturbation approach.
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6.1 Ordering

The Ordering, or Sorting, primitive decides the order of two quantities expressing the k-th coordi-
nate of the i1-th and i2-th input points. On input perturbed with the perturbation de�ned by (1)
the primitive decides the sign of

xi1;k(�)� xi2;k(�) = xi1;k + � ik1 � xi2;k � � ik2 :

For degenerate inputs the factors of the in�nitesimal must be compared, which comes down to
comparing i1 against i2. Notice that this is the lexicographic ordering. Since all indices are distinct,
the perturbation is valid by Theorem 8. The perturbation of Equation (5), for k = 1, is valid too.

The evaluation requires in the worst case, an extra constant-time check. Under the bit model,
the extra comparison adds a O(log n) term, which is upper bounded by the original bit complexity
because each xi;j is assumed to be 
(log n) bits long.

Theorem 15 The perturbation de�ned by (1) is valid with respect to the Ordering primitive and
does not change the asymptotic running-time complexity of this primitive in the algebraic as well
as the bit model. The same holds for the perturbation of Equation (5) for comparisons along the
�rst coordinate.

If we compare along some general k-th coordinate, validity may not hold for the second scheme.

6.2 Orientation and Transversality

Given a query point xid+1 and a hyperplane in Rd spanned by points xi1 ; : : : xid , Orientation, or
Sidedness, decides in which one of the two halfspaces de�ned by this hyperplane the query point
lies. A degeneracy occurs exactly when xid+1 lies on the hyperplane. The primitive is formulated
as a test of a determinant sign; the relevant matrix is �d+1 below. Transversality determines the
orientation of d points in Rd�1 given by their homogeneous coordinates and is expressed as the sign
of det(�d), where

�d+1 =

2
66664

1 xi1;1 xi1;2 ::: xi1;d
1 xi2;1 xi2;2 ::: xi2;d
...

...
...

...
1 xid+1;1 xid+1;2 ::: xid+1;d

3
77775
; �d =

2
66664

xi1;1 xi1;2 ::: xi1;d
xi2;1 xi2;2 ::: xi2;d
...

...
...

xid;1 xid;2 ::: xid;d

3
77775
:

Matrix �d also comes up in a dual context, when the input objects are hyperplanes in (d � 1)-
dimensional space and Transversality decides on which side of the �rst hyperplane lies the inter-
section of the other d� 1 hyperplanes.

For completeness we state the following proposition which relies on Theorem 8, the properties
of Vandermonde matrices and Corollary 14.

Proposition 16 [1] Perturbation (1) is valid with respect to algorithms that branch on deter-
minants of ��+1 and ��, for � � d, where d is the space dimension. The perturbation increases
the asymptotic running-time complexity of evaluating the primitive, under the algebraic model,
by O(log d). Under the bit model, the worst case complexity is increased by a factor of O(d1+�),
where � is an arbitrarily small positive constant.
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Now consider scheme (5). By Theorem 8 the nonsingularity of �d+1(�) is obtained by using the
closed form expression of a Vandermonde determinant.

detVd+1 = det

2
66664

1 i1 mod q : : : id1 mod q
1 i2 mod q : : : id2 mod q
...

...
...

1 id+1 mod q : : : idd+1 mod q

3
77775
�

d+1Y
k>l�1

(ik � il) 6� 0 (mod q):

Validity in the case of Transversality follows similarly. The crucial property for both schemes
is that they de�ne n vectors, every d of which are linearly independent.

The sign of det�d+1(�) and det�d+1(�) is the sign of the least signi�cant term in the respective
polynomial. One way to compute it, adopted by SoS, is to calculate directly all terms, starting with
the one of least degree, until �nding one that does not vanish. Fortunately, our scheme lends itself
to the more e�cient technique of Theorem 13. The �rst column of �d+1(�) has to be multiplied by
�, then both perturbed matrices satisfy the theorem's hypothesis.

Theorem 17 Perturbation (5) is valid with respect to Orientation and Transversality. It increases
the worst case algebraic and bit complexities of the Orientation and Transversality primitives by a
O(log d) factor.

Proof Validity follows from Theorem 8. The original algebraic complexity is �(MM(d)) [26].
From Corollary 14, the complexity on perturbed input is O(MM(d) log d). The original worst case
bit complexity depends on the size of the answer which is �(ds). Typically modular arithmetic is
used, requiring �(ds) di�erent �nite �elds, while on perturbed input the number of �nite �elds is
O(d(s+ log n)). The assumption that s = 
(log n) �nishes the proof. 2

An important feature for implementors is that the growth of any computed quantity is quasi-
linear in the dimension. For instance, in a 3-dimensional problem with input quantities of absolute
magnitude less than 105, any computed quantity �ts in a computer word.

6.3 InSphere

We apply (1) to the InSphere primitive which generalizes to arbitrary dimension the planar InCircle
primitive. InSphere decides, given d+ 2 points, whether the (d+ 2)-nd point lies in the interior of
the higher-dimensional sphere de�ned by the �rst d+ 1 points in Rd . It can be reduced to testing
the sign of a determinant as follows. First, lift all points to the surface of a paraboloid in Rd+1 by
adding a (d + 1)-st coordinate equal to the sum of the squares of the d coordinates de�ning each
point. The original space is a d-dimensional hyperplane which the paraboloid touches at the origin.
Let xi1 ; xi2 ; : : : ; xid+1 be the points de�ning the sphere; their lifted images de�ne a hyperplane H
in Rd+1 . The query point xid+2 lies within the sphere if and only if its lifted image lies below H, in
other words to the same side of H as the original points. A degeneracy occurs exactly when xid+2
lies on the sphere or, equivalently, on H, which happens exactly at the singularities of

�d+2 =

2
66666664

1 xi1;1 xi1;2 : : : xi1;d
Pd

j=1 x
2
i1;j

1 xi2;1 xi2;2 : : : xi2;d
Pd

j=1 x
2
i2;j

...
...

...
...

...

1 xid+1;1 xid+1;2 : : : xid+1;d
Pd

j=1 x
2
id+1;j

1 xid+2;1 xid+2;2 : : : xid+2;d
Pd

j=1 x
2
id+2;j

3
77777775
:
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Eliminating degeneracies for the particular matrix could be achieved by the \cheap trick" of [2]
which perturbs the points on the higher-dimensional paraboloid, by perturbing the sum of squares
as if it were an additional coordinate. However, this may lead to inconsistencies in some special
con�gurations, if the same algorithm also uses another primitive such as �d+1. Consider, for
instance, deciding the relative position of a line and a circle which touch at two coincident points
x1 and x2, by using the Orientation primitive on the line and x1 and the InSphere primitive on the
circle and x2.

Validity reduces by Theorem 8 to proving the nonsingularity of the Vandermonde-resembling
matrix

Wd+2 =

2
66664

1 i1 : : : id1
Pd

j=1 i
2j
1

1 i2 : : : id2
Pd

j=1 i
2j
2

...
...

...
...

1 id+2 : : : idd+2
Pd

j=1 i
2j
d+2

3
77775
;

which follows from Proposition 10 or Theorem 11. Unfortunately, the hypothesis of the theorem is
not readily satis�ed by the second perturbation (5). A similar scheme, with residues taken mod q,
with q = 
(nd�1), has been recently shown [27] to be valid, o�ering a slight improvement on
complexity.

For the �rst scheme, the perturbed determinant expands to

det�d+2(�) =

��������

1 xi1;1(�) : : : xi1;d(�) �2
Pd

j=1 i
2j
1 + �(2

Pd
j=1 xi1;ji

j
1 � id+21 )

...
...

...
...

1 xid+2;1(�) : : : xid+2;d(�) �2
Pd

j=1 i
2j
d+2 + �(2

Pd
j=1 xid+2;ji

j
d+2 � id+2d+2)

��������
+

+

��������

1 xi1;1(�) : : : xi1;d(�)
Pd

j=1 x
2
i1;j + �id+21

...
...

...

1 xid+2;1(�) : : : xid+2;d(�)
Pd

j=1 x
2
id+2;j

+ �id+2d+2

��������
: (6)

Computing each of the two determinants can be reduced to a characteristic polynomial computation.
For the �rst determinant, it su�ces to move an � factor from the last to the �rst column, which
reduces the problem to the sign determination of

det

2
664
� xi1;1(�) : : : xi1;d(�) �

Pd
j=1 i

2j
1 + (2

Pd
j=1 xi1;ji

j
1)� id+21

...
...

...
...

� xid+2;1(�) : : : xid+2;d(�) �
Pd

j=1 iid+2;j + (2
Pd

j=1 xid+2;ji
j
d+2)� id+2d+2

3
775 :

The entries of this matrix are linear in � and the leading matrix coe�cient is Wd+2 above, so
Theorem 13 is applied.

For the sign of determinant (6), the �rst column is multiplied by � and Theorem 13 is again
applied. Now the leading matrix coe�cient is simply a Vandermonde matrix of order d+ 2.

Theorem 18 The perturbation of Equation (1) is valid with respect to the InSphere primitive
and increases its algebraic complexity by a O(log d) factor. Under the bit model, the worst case
complexity increases by a O(d1+�) factor, where � is an arbitrarily small positive constant.

Proof Validity is already established, based on Theorem 11. The original algebraic complexity
is �(MM(d)) and, by Corollary 14, the new complexity is O(MM (d) log d). In the worst case, the
determinant has size �(ds). With modular arithmetic the original bit complexity is then

�(d2(ds)1+� + dsMM(d));
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where � denotes the smallest of several positive constants.
For the perturbed primitive, modular arithmetic is used and the number of �nite �elds is

O(ds+ d2 log n) since this is the coe�cient size in each of the two characteristic polynomials that
must be computed. This bound follows from the fact that each coe�cient is the sum of certain
minors of a matrix of order d + 2, whose entries have bit size bounded by maxfs; d log ng. Hence
the bit complexity of evaluating the primitive is

O(d2(ds+ d2 log n)1+� + (ds+ d2 log n)MM(d) log d):

The overhead now follows from s = 
(log n). 2

6.4 Limitations

Primitives that decide on the relative position of derived objects may pose a limitation to our
method. Consider, for instance, the two-dimensional ham-sandwich algorithm in [28], where lines
are the input objects and their intersection points are the derived objects. The three primitives
of the algorithm are: deciding whether a point lies above or below a line; comparing the �rst
coordinate of two points; and comparing the distances of two points from a line.

Applying scheme (1) to the points removes all degeneracies but it is not clear that this does not
create some inconsistent con�guration. Applied to the input lines, SoS successfully perturbs them
into general position. However, perturbation (1) is valid only for the �rst test. Consider a scheme
using the �rst n primes, denoted as q1; : : : ; qn:

xi;j(�) = xi;j + �(qji ): (7)

The bit complexity of the perturbation quantities is then O(d log n). Applied to the ham-sandwich
algorithm, the perturbation of Equation (7) is valid for the �rst and second tests but not for the
third one. One should keep in mind that consistency requires that exactly one scheme is applied
to all primitives of a speci�c algorithm.

Another problem involving derived objects is the line-segment intersection problem. Given a
�nite set of line segments in the plane, the goal is to construct the planar arrangement de�ned by
the segments and their intersections. The hardest primitive here is to decide on which halfplane,
with respect to a query segment, the intersection of two segments lies.

7 Computing Convex Hulls

Convex hull computation in general dimension is a fundamental geometric problem with a wide
variety of applications, such as visibility and illumination in geometric modeling and graphics [29,
30], predicting the poses of industrial parts on a conveyor belt and computing stable grasps [31, 32],
collision detection in robotics and animation [33], material identi�cation in geology [34], molecular
docking in drug fabrication [35] as well as in solving systems of nonlinear equations [36, 37, 21].

This section discusses our implementation of the Beneath-Beyond algorithm [11] which solves the
Convex Hull Volume (CHV) problem for �nite input sets of integral points in arbitrary dimension,
and reports on the running-time performance. The implementation produces approximate solutions
to the Convex Hull Face-Structure (CHF) problem, in a sense speci�ed later. We examine the
issue of postprocessing that arises when we wish to recover the exact facet structure. The section
concludes with an application to �nding a stable grasp of a robot.

The algorithm is designed under the assumption of non-degeneracy. The perturbation of Equa-
tion (5) is applied in order to allow arbitrary inputs, since the only two tests needed are Ordering
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Table 1: Performance of the Convex Hull Volume implementation.
user CPU running time

d n � ' 1 (random) � ' :5 � = 0 (coincident)

4 54 4s 24s
4 100 8s 40s 1m 6s
4 200 19s 1m 11s 2m 8s
4 500 53s 7m 39s

3 100 0s 11s
4 100 8s 40s 1m 6s
5 100 43s 4m 7s 5m 19s
6 100 4m 18s 45m 15s
7 100 29m 1s

on the �rst coordinate and Orientation. The exact volume of the convex hull is possible to obtain
without any postprocessing because, by Proposition 4, the problem mapping

CHV : Zdn! Q

is continuous everywhere. The algorithm sorts all points on their �rst coordinate and then proceeds
incrementally by adding each new point to the convex hull of all previous points. Due to the
perturbation, each region between the new point and the existing hull can be partitioned into d-
simplices, each de�ned by the new point and one of the visible facets. Then, it is straightforward
to compute the exact volume by summing all simplex volumes whose expression as an �-polynomial
has a nonzero constant term.

The extreme points of a given point-set are those that strictly maximize the inner product with
some d-vector, i.e., they are not expressible as a convex combination of the other points; these are
exactly the vertices of the convex hull. Perturbation (5) guarantees that the output polytope is
simplicial; its vertex set is a superset of the extreme points because it may contain some points
that are not extreme but simply extremal, i.e., they maximize the inner product with a certain
vector. Also, the number of facets may not be minimum because of the extremal points reported
as vertices and because all facets are triangulated.

If a speci�c application required that the output polytope had the minimum number of facets
regardless of whether they are simplices or not, then certain adjacent facets would have to be
merged. This can be accomplished by comparing the normals of every two adjacent facets. The
normal of a facet can be computed in O(MM (d)) and there are d tests per facet, hence this
postprocessing does not a�ect the asymptotic complexity of the program. A more detailed account
of postprocessing for convex hulls and its implementation can be found in [14].

The implementation has bene�ted from code written by H. Rosenberger, E. M�ucke and D. Ma-
nocha. The current version is in Ansi-C and includes about 1000 lines of code for the main combina-
torial part, 600 lines for the perturbation part and 1400 lines for the modular and exact integer arith-
metic package. It is free for distribution either by anonymous ftp from robotics.eecs.Berkeley.edu

/pub/ConvexHull or at http://www.inria.fr/safir/SAFIR/Ioannis-eng.html.
Table 7 shows the performance of the program on a SparcStation 10/41 with one 40 MHz

processor, 32 MBytes of memory and a rating of 50 SpecInt92. Each Orientation test comprises of a
heuristic calculation of det �d+1; only if this vanishes is the reduction to a characteristic polynomial
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undertaken. As before, d and n stand for the dimension and the number of input points respectively
and all coordinates are integers in (�100; 100). The output of the program is the rational volume
and a list of facets, each described by the de�ning input points; no postprocessing was implemented.
The user CPU running times are rounded down to an integer number of seconds.

For �xed d and n we have experimented on inputs of various degrees of degeneracy. The last
three columns are headed by the approximate fraction � of Orientation tests whose evaluation
is nonzero on the original input; these tests are carried out as determinant calculations. Thus,
the �rst column corresponds to random inputs with practically all tests being generic. The other
extreme has inputs with coincident points, constructed to test the program's performance when all
Orientation tests reduce to a characteristic polynomial. The middle column corresponds to point
sets comprised of random points, generated as above, and coincident points, at an appropriate
ratio.

In analyzing these results it must be remembered that the program's complexity depends on the
number of facets in the partial convex hulls. In the worst case, the hull of n points in d dimensions
has O(nbd=2c) facets. However, the expected number of facets for points selected randomly as above
is proportional to logd�1 n [38]; this is veri�ed by our experimental results.

The �rst author has adapted this program for commercial use in computing the pose of an
industrial part that falls on a conveyor belt. The algorithm computes the convex hull facets, then
projects them on a sphere to compute the probability of the object landing on this facet [31]. This
information is then used by the gripper in order to grasp and move the part from the belt. The
input comes in 
oating-point numbers: we calculate the smallest power of 10 that produces signed
integers of at most 31 bits and multiply the data by this power. For this application the precision
is always su�cient. More importantly, the three-dimensional hulls must have all coplanar facets
merged, no degenerate facets with zero area and no non-extreme vertices.

We choose to maintain the necessary planarity information as we build the hull, instead of
computing normals and comparing them. This is easy to do because of the way the Orientation
primitive has been implemented: if det�4 vanishes, then we know that only because of the per-
turbation the query point appears to be o� the given plane. Hence we can mark the appropriate
new facets as being on the same plane as the old facet. Every two-dimensional facet carries a
positive integer that serves as an index to the plane that contains it. One-dimensional facets carry
two negative integers corresponding to the two planes delimiting the hull which intersect at this
facet. Zero-dimensional facets are not encountered due to a preprocessing that has eliminated all
duplicate sites. Once the three-dimensional polytope is built, coplanar facets are merged and, for
each plane, a two-dimensional problem is solved to clear the non-extreme points.

Maintaining the coplanarity information, merging facets and running the two-dimensional sub-
problems requires an additional 500 lines of code. It is not clear that in arbitrary dimension this
approach to postprocessing would be optimal and, moreover, whether the perturbation method
would be the best alternative when the facet structure is the �nal goal. In general, when the
complexity of postprocessing becomes signi�cant, the value of the perturbation technique should
be reexamined against alternative strategies.

8 Conclusion

We have de�ned the notion of input perturbation and have concentrated on linear schemes, which
are amenable to e�cient computation techniques. In particular, we have proposed two such schemes
that are valid for certain important geometric primitives, including InSphere. The merit of these
schemes is twofold. First, their simplicity makes them attractive for practical use and, second, they
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are the most e�cient to date.
A research direction is to develop optimal schemes applicable to the widest possible class of

primitives. It is also interesting to examine whether it is possible, in general, to control the direction
at which the input points are perturbed; this would simplify postprocessing.

The basic existential question on the perturbation method is still open. After the 
urry of papers
proposing di�erent perturbation schemes, recent work argues against the general applicability of this
method [8, 9, 39] motivated by the observation that the di�culty and complexity of postprocessing
might sometimes dominate that of the entire program. Indeed, perturbations should not be treated
as a panacea but should rather be considered in the speci�c context of the algorithm and the output
desired.
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