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Abstract

Real-time simulation and animation of global deformation of 3D
objects, using finite element method (FEM), is difficult due to the
following 3 fundamental problems: (1) The linear elastic model is
inappropriate for simulating large motion and large deformations
(unacceptable distortion will occur); (2) The time step for dynamic
integration has to be drastically reduced to simulate collisions; (3)
The size of the problem (the number of elements in the FEM mesh)
is one order of magnitude larger than a 2D problem.

In this paper, we present a novel approach to counter these 3
difficulties: (1) using quadratic strain instead of the popular linear
strain to simulate arbitrarily large motion and global deformation of
a 3D object; (2) applying an implicit simplified impulse to a decou-
pled system, which makes an integration step for collision as cheap
as a regular dynamic integration step; (3) using a graded mesh in-
stead of a uniform mesh, which reduces the asymptotic complexity
of a 3D problem to that of a 2D problem.

1 Introduction

Physically realistic modeling and manipulation of deformable ob-
jects has been the bottleneck of many applications, such as human
tissue modeling, character animation, surgical simulation, etc. A-
mong the potential applications, a virtual surgical training system
is the most demanding for the real-time performance because of the
real-time interaction with virtual human tissue.

So far real time simulation and animation of deformation has
only been achieved in two special cases: 2D problems such as cloth
simulation [2], and small or local deformations for 3D objects [4].

Figure 1: The bottom of the object is fixed and its top is twisted.
The top in the left image is distorted (grown bigger) because it is
simulated using linear elasticity. The right image shows that the
same distortion does not occur with nonlinear elasticity.

In this paper, we address the bottleneck problem of real-time
simulation of physically realistic largeglobal deformationsof 3D
objects. In particular we apply the finite element method to model
such deformation. Byglobal deformation, we mean deformations,
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Figure 2: The left image shows a beam at its initial configura-
tion with a fixed left end and a free right end. The middle image
shows thedistorteddeformation under gravity, using linear strain.
The right image shows theundistorteddeformation, under the same
gravitational force, using quadratic strain (equation (5) and (6)).

such as large twisting or bending of an object, which involve the
entire body, in contrast to poking and squeezing, which involves a
relatively small region of the deformable object.

First, we point out that the application of linear elastic finite el-
ement methods to simulating large global deformation leads to un-
acceptable distortions (Figure 1 and 2). In section 3 we propose to
simulate global deformations using nonlinear finite element meth-
ods.

Secondly, we propose an efficient collision handling method for
FEM in section 4. Simulating deformable object collisions using
a penalty method [12] requires tiny time steps to generate visually
satisfactory animations. A general impulse collision [1] is consid-
ered more efficient and accurate but still requires more computa-
tional power than collision-free dynamics. In section 4 we present
an extremely simple and efficient collision time integration scheme,
which makes the time integration of collision dynamics as cheap as
that of collision-free dynamics.

Finally, we observe that simulation of 3D deformation is at least
one order of magnitude more difficult than a similar 2D problem be-
cause the size of the problem (the number of elements in its mesh)
is one order higher. To counter this problem we propose agraded
mesh that reduces the complexity of the 3D problem by one order
of magnitude asymptotically.

2 Related Work

Our work of modeling and simulating a deformable object falls in-
to the realm of physically based modeling. Witkinet al[15] sum-
marizes the methods and principles of physically based modeling,
which has emerged as an important new approach to computer ani-
mation and computer graphics modeling.

In general, there are two different approaches to modeling de-
formable objects: the mass spring model and the finite element
model.

The mass spring model has good success in creating visually sat-
isfactory animations. Waters [14] uses a spring model to create a
realistic 3D facial expression. Provotet al[10] describes a 2D mod-
el for animating cloth, using double cross springs. Promayonet
al[9] presents a mass-spring model of 3D deformable objects and
develops some control techniques.

Despite the success in some animation applications, the mass



spring models do not model the underlining physics accurately,
which makes it unsuitable for simulation that requires more accura-
cy. The structure of the mass spring is often application dependent
and hard to interpret. The animation results often vary dramatical-
ly with different spring structures. The distribution of the mass to
nodes is somehow (if not completely) arbitrary. Despite its inac-
curacy, it does not have visual distortion and it is computationally
cheap to integrate over time because the system is, by its very na-
ture, a set of independent algebraic equations, which require no
matrix inversions to solve.

As an alternative, finite element methods (FEM) model the con-
tinuum much more accurately and its underlining mathematics is
well studied and developed. Another similar method is the finite d-
ifference method, which is less accurate but simple and appropriate
to some applications. Indeed a linear finite difference method over a
uniform mesh is just a special case of FEM. Its accuracy and math-
ematical rigorousness makes FEM a better choice for applications
such as surgical simulations.

Terzopouloset al[12, 11, 13] applies both finite difference and
finite element methods in modeling elastically deformable object-
s. Celnikeret al[6] applies FEM to generate primitives that build
continuous deformable shapes designed to support a new free-form
modeling paradigm. Pieperet al[8] applies FEM to computer-aided
plastic surgery. Chen [3] animates human muscle using a 20 node
hexahedral FEM mesh. Keeveet al[5] develops a static anatomy-
based facial tissue model for surgical simulation using the FEM.
Most recently, Cotinet al[4] presents real-time elastic deformation
of soft tissues for surgery simulation, which only simulates the stat-
ic deformation.

Out work differs from the previous work by either one or all of
the following: (1) we simulate large global deformation instead of
small local deformation; (2) we simulate the dynamic behavior of
soft objects rather than the static deformation.

3 Global Deformation Using Nonlinear
FEM

By global deformation, we mean deformations that involve the en-
tire body, such as large bending and twisting. We apply the dis-
placement based finite element method (FEM) to model the dy-
namics of such deformation of 3D elastic objects. Essentially this
requires solving the following system of differential equations

M�u+D_u+R(u) = F (1)

whereu is the3n-dimensional nodal displacement vector;_u and
�u, the respective velocity and acceleration vectors;F, the external
force vector;M, the3n� 3n mass matrix;D, the damping matrix;
andR(u), the internal force vectors due to deformation.n is the
number of nodes in the FEM model ([16]). It is worth pointing
out that the mass matrixM and damping matrixD usually remain
constant. At each time step, we just have to compute the external
forceF and the internal forceR(u), and solve the system (1)1.

All previous works ([8],[3],[5],[4]) define internal force using
linear strain as following:
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1Note that the static equilibrium equation is just a special case of equa-
tion (1), where�u and _u are set to zeros.

wherex, y and z are the independent variables of the cartesian
frame, andu, v andw are the corresponding displacement vari-
ables at the given point. Other terms of the strain at point(x; y; z),
�y, �z, 
yz and
zx, are defined similarly.

This linear strain makes the internal force vector linear with re-
spect to nodal displacement vector. Namely it simplifies equation
(1) to the followinglinear system:

M�u+D_u+Ku = F (4)

This allows a preprocessing step that computes the constant s-
tiffness matrixK and its LU factorization. This preprocessing step
has been the key to real-time performance in previous works such
as [4], which animates deformations using a sequence of static e-
quilibrium.

However this approach is only appropriate for simulating local
deformation, such as poking and compression, and small bending
and twisting. Application of this linear strain to modeling large
global deformation will lead to unacceptable distortion (Figure 1
and 2). The distortion is due to the fact that this linear strain models
rigid body motions asdifferentialmotions. If we subject an unde-
formed object to a large (instead of differential) rigid body rotation,
the linear strain (2) and (3) will give a non-zero strain, while the
body has no deformation at all. Therefore the object will deform
itself to balance thisartificial strain.

Large global deformations are crucial to many applications, such
as surgical simulation and character animation. This tempts us to
model the strain differently. To simulate global deformations and
large motions, we apply quadratic strain to modelR(u) as follow-
ing:
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Notice that this quadratic strain handles arbitrarily large rigid
body motion correctly. Namely no artificial strain will be intro-
duced when we subject the object to a rigid body motion.

This quadratic strain makes (1) a nonlinear system, in which the
internal forceR(u) is no longer a linear term of nodal displace-
ments. If we solve this nonlinear system using an implicit integra-
tion scheme as [2], real time simulation is impossible for reasonably
large meshes.

We observe that a soft material such as live tissue has small stiff-
ness in all directions (not necessarily isotropic). This makes explic-
it time integration schemes appropriate because we can take large
time steps. We apply the explicit Newmark scheme to equation (1),
which leads to the following equations:

un+1 = un + _un4tn +
1

2
�un4t2n (7)

_un+1 = _un +
1
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(9)
The order of updating is (7), (9) and then (8). The bottleneck is

equation (9), which is a nonlinear system of equations. If we apply
a general method, such as Newton’s method, to solve this equation,
it requires inverting a large sparse matrixM + 1

2
4tnD at each

time step. Note that the time step4tn is, in general, not a constant,
therefore it is impossible to preprocess the system by computing
the inversion of this large sparse matrix. Inverting a large matrix



at each integration step makes real-time simulation impossible for
any problems of reasonable size.

To achieve real-time performance, we approximate the mass ma-
trix M by a diagonal matrix, which is obtained by lumping its rows
([16]). If we then apply Rayleigh dampingD = �M + �K, with
� = 0, the matrixM+ 1

2
4tnD becomes a diagonal matrix. This

simplifies the nonlinear system of equations (9) into a set of inde-
pendentalgebraicequations as following:

qi�uin+1 = f in+1 � rin+1 � din+1 (10)

whereqi is thei�th component of the diagonalizedM+ 1

2
4tnD;

�uin+1, f in+1, rin+1 anddin+1 are thei � th component ofun+1,
Fn+1,R(un+1) andD( _un+

1

2
�un4tn) respectively. Solving this

system of equations requires no matrix inversion.
The diagonalization also makes the enforcement of the all types

of boundary conditions very simple. For natural boundary condi-
tion, we specify the force and computeuin+1. For essential bound-
ary conditions, we simply ignore equation (10) and set explicitly
the corresponding displacement and velocity to the given values.

It is worth pointing out that the critical time step for an explicit
integration scheme is dictated by the largest stiffness in the material.
This is why an explicit integration scheme is appropriate for soft
tissues, which is ”soft” in all directions (although not necessarily
isotropic), while it is not appropriate for cloth simulation [2].

4 Collision Integration Scheme

For deformable object collisions, the collision time can be assumed
finite (unlike the instantaneous collision of rigid bodies). This al-
lows a larger time step for integration.

The popular penalty methods for collision handling [12, 11, 13]
did not take advantage of this. A penalty method models the colli-
sion by adding an artificial spring of large stiffness at the point of
collision. This stiff spring requires tiny time steps to stably simu-
late a collision. Various experiments show that the ratio between a
collision free time step and that of a penalty collision is on the order
of hundreds if not more.

This tempts us to develop new collision-handling methods that
avoid adding extra artificial stiffness into the system. We will illus-
trate our collision-handling method, using a special case: collision
between a moving deformable body and a stationary rigid body (fig-
ure 3). Later in this section, we will show that it is straightforward
to extend this method to handle general deformable object colli-
sions.

nV

rigid surface

deformable body

Vn

Figure 3: A flexible body collides with a rigid body.

Consider the collision between a deformable body and a station-
ary rigid body (figure 3). Assume that at timetn, the nodep, with
velocity v̂(p)n, is colliding with a rigid surface of outward normal
n̂. The non-penetration constraint requires that the normal com-
ponent of the velocity of pointp drops to zero at the moment of

collision. Unlike a rigid body collision, the flexible body will main-
tain the contact with the stationary rigid body for a nonzero period
of time. We enforce the non-penetration constraint at nodep by
setting the normal component ofv̂(p)n+1 to zero as following:

v̂(p)n+1 = v̂(p)n + (v̂(p)n � n̂)n̂ (11)

By equation (8), we get

â(p)n+1 =
2v̂(p)n+1
4tn

�
2v̂(p)n
4tn

� â(p)n (12)

If we choose4tn+1 = 4tn
2, by equation (7), we have

ûn+2 � n̂ = ûn � n̂ (13)

This shows that the non-penetration constraint is enforced after
two time steps, because there is no relative motion of the flexible
body normal to the surface of the stationary rigid body.

This collision-handling integration scheme can be considered a
special case of impulse [1]. However unlike a general impulse, the
impulse is never explicitly computed for a frictionless collision.

When friction at collision needs to be considered, we can com-
pute the Coulomb friction easily. By plugging equation (11) into
equation (8), we can compute the equivalent acceleration at point
p. The we can use equation (12) to compute the equivalent impulse
at pointp, which is a force normal to the collision surface. This en-
ables us to compute the Coulomb friction and simulate a frictional
collision. Note that no matrix inversion is ever needed for impulse
computation because the system is diagonalized.

This collision integration scheme can be generalized to general
collisions. A general collision involves multiple point contact. S-
ince the system is decoupled, such a collision is modeled as a set of
simultaneousindependentsingle point collision. When both object-
s are deformable and moving, we simply set the normal component
of the velocity at the point of collision such that the relative normal
velocity at the point is zero.

Unlike a general impulse, we do not have to distinguish between
the colliding contact and the resting contact [1]. A deformable ob-
ject’s resting on a surface is handled exactly the same as collision,
with no additional computational cost.

5 Graded Mesh

C

A

B

Figure 4: A 2D example of graded mesh.

2This does not mean that the entire simulation has to use a constant time
step. Indeed the simulation can still use variable time step. This constraint
(choice) is only enforced at collision time.



While 2D FEM has great success in achieving real time perfor-
mance in computer graphics applications, the computational cost is
much higher for 3D applications, mainly due to the increase in the
number of elements in the mesh. In a roughly uniform 2D finite
element mesh, the number of elements is aboutO(n2), wheren is
the average number of elements in each principle direction. How-
ever a similar 3D mesh would haveO(n3) elements, which leads
to a much larger system of equations.

A mesh has to be fine enough to capture the relevant modes. To
illustrate, let us consider using FEM to simulate a wave in a soft ma-
terial, which is one special kind of deformation. When the spatial
frequency of the wave increases, we need finer elements to simu-
late the wave. When the spatial frequency decreases, we need fewer
elements. Modal analysis shows that deformation can be approxi-
mated by model composition, where each mode is corresponding to
a deformation of a fixed spatial frequency.

Nicolson [7] shows that the cutoff spatial frequency of an object
in response to external loads decreases faster than1=d in terms of
the distanced away from the surface. This means that for a given
error bound, we need finer elements on the surface and coarser el-
ements away from the surface. Furthermore Nicolson’s [7] result
suggests that if the size of the element increases proportionally to
d, we will lose little accuracy with respect to static forces exert-
ed on the surface. Based on this observation, we propose using a
graded mesh to model 3D objects. A 2D example of such mesh is
shown in figure 4. Extension of this 2D example to a 3D hexahedra
mesh is straightforward. Such a mesh reduces the complexity of 3D
problems fromO(n3) toO(n2), while losing little accuracy.

In general, a graded mesh has a severe drawback despite its re-
duction of the problem size. It is computationally costly to enforce
the compatibility at element interface. To simplify the presentation,
we discuss this using the 2D example in figure 4. However, note
that the discussion applies to 3D hexahedra mesh as well.

For a mesh of linear quadralateral elements, the edge of each el-
ement is always a straight line. Therefore the node such asC in
figure 4 is constrained by nodeA andB. Namely the displacement
of C has to be such thatA, B andC are always co-linear. We refer
to a node such aC as ageometrically constrainednode. The gen-
eral solution is to use a Lagrangian multiplier, which expands the
system and therefore adds extra computational cost to the simula-
tion.

However since we have a diagonalized system (10), the com-
patibility at element interface can be easily enforced without a La-
grangian multiplier. For unconstrained nodes, such asA andB, we
proceed with the computation as presented in section 3. For a con-
strained node, such as nodeC, we simply set its displacement to
the average ofA andB. This explicitly enforces the compatibility
without any additional computational cost.

6 Experiments

We implemented both statics and dynamics of elastic objects, using
FEM with a hexahedral mesh. On a 400MHz Pentium II PC, a u-
niform mesh of 1331 elements needs about 0.11 seconds per time
step. The graded mesh with the same accuracy needs only 0.06 sec-
onds per step. Also there is no visual slowdown during a collision.

7 Conclusion

We argued that it is important to simulate large global deformation
using non-linear strain. A nonlinear strain leads to a nonlinear FEM
formulation, which is in general expensive to solve in real time. In
order to achieve real-time performance, we diagonalize the mass
matrix and the damping matrix.

In some sense this approach combines the best of the linear FEM
model and mass-spring model. A mass-spring model is inaccurate
in its mathematical formulation, however it is cheaper to solve be-
cause it is a diagonal system from the very beginning, and it does
not introduce any geometric distortion. Linear FEM model is more
accurate in its mathematical formulation of material behavior, but
expensive to solve and has distortion for large motion and deforma-
tion. A diagonalized nonlinear FEM approach models the material
behavior with more accuracy than a linear model and it is still cheap
to solve and has no distortion.

The nonlinear FEM model (section 3) and collision-handling in-
tegration scheme (section 4) apply to any type of mesh. Although
we presented a graded mesh in terms of a hexahedral mesh, the
asymptotic argument applies to tetrahedral meshes as well. Indeed
it becomes simpler with a tetrahedral mesh because the issue of ge-
ometric compatibility at the element interface does not arise.

Despite the many advantages of the hexahedral mesh, it is diffi-
cult to generate the mesh for complex geometry. Because of this,
we are in the process of extending our system to tetrahedral meshes
so that we can simulate deformations of more complex geometry.
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