
1

Advanced Topics in Computer Systems, CS262b

Brewer/Hellerstein

Nemesis OS Architecture
January 25, 2001

Focus of this paper: OS structure for multimedia applications (in addition to traditional apps)

MM apps:

o temporal property: time-critical demands

o informational property: can often tolerate some data loss

Key observation: QoS crosstalk

o Big OS servers/services don’t obey temporal properties... They mix resources among
many threads/processes and have high shared overhead that affects everyone.

o Interrupt-driven scheduling subverts the “official” scheduling policy; we can’t allow
interupts to affect the overall scheduling of resources

o All resources matter, not just CPU

Key ideas:

o provide for dynamic alloc of resources to applications (not OS services)

o must get the accounting of resource usage correct (eg. CPU cycles spent on paging)

o feedback to application to adjust its resource usage (consistent vs. predictable)

CPU use managed by scheduler activations

o threads can be resumed or can have an upcall (to the activation)

o thread contexts managed at user level, kernel only provides atomic context switch and
uses the user-level data structures

o no kernel threads: only user-level threads with event dispatch (compare with wakeup
predicates in exokernel)

o kernel is completely non-blocking and asynchronous (if you don’t have threads you
can’t block). This ensures that scheduling is only done at user-level (within an sdom).

o A form of two-level scheduling

Interrupts are essentially queued as events:

o After arrival, interrupts are masked, which limits the impact interrupts can have on
system performance

o In practice, I/O devices are polled. An (unmasked) interrupt just ensures that the driver
runs to do the polling...

2

o Demultiplexing is the most complicated operation a interrupt handler should do (i.e.
which event queue?)

Separate control from data flow (path-based)

