Solving for c_{1} and c_{2}

$$
\begin{gathered}
\boldsymbol{c}=\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=\left[\begin{array}{l}
\mathrm{d} p_{z} \\
\mathrm{~d} p_{x}
\end{array}\right] \\
\mathrm{d} \boldsymbol{p}=J \cdot \boldsymbol{c} \\
\boldsymbol{c}=J^{-1} \cdot \mathrm{~d} \boldsymbol{p}
\end{gathered}
$$

