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2. The motion should not penetrate any objects in the environ-
ment.

3. The body should be at a particular position and orientation at
a particular time.

4. A particular joint should be at a particular position (and
maybe having a specific velocity) at a specific time.

5. The motion should have a specified style (such as happy or
energetic) at a particular time.

Finding paths in the motion graph that satisfy the hard con-
straints and optimize soft constraints involves a graph search. Un-
fortunately, for even a small collection of motions, the graph G has
a large number of edges and straightforward search of this graph is
computationally prohibitive. The main reason is the need to enu-
merate many paths. There are, in general, many perfectly satisfac-
tory motions that satisfy the constraints equally well. For example,
if we require only that the person be at one end of a room at frame 0
and near the other end at frame 5000, unless the room is very large,
there are many motions that satisfy these constraints.

4 Randomized Search

The motion graph is too hard to search with dynamic programming
as there are many valid paths that satisfy the constraints equally
well. There may be substantial differences between equally valid
paths — in the example above, whether you dawdle at one side of
the room or the other is of no significance. This suggests summa-
rizing the graph to a higher level and coarser presentation that is
easier to search. Branch and bound algorithms are of no help here,
because very little pruning is possible.

In order to search the graph G in practical times, we need to do
the search at a variety of levels where we do the large scale mo-
tion construction first and then “tweak” the details so that the mo-
tion is continuous and satisfies the constraints as well as possible.
Coarser levels should have less complexity while allowing us to ex-
plore substantially different portions of the path space. In such a
representation, every level is a summary of the one finer level. Let
G′ ← G′′ ← G′′′ ← · · ·← Gn ← G be such a hierarchical represen-
tation where G′ is the coarsest level and G is the finest. We will first
find a path in G′ and then push it down the hierarchy to a path in G
for synthesis.

4.1 Summarizing the Graph

All the edges between two nodes s and t can be represented in a
matrix Pst . The (i, j)’th entry of Pst contains the weight of the
edge connecting si to t j and infinity if there is no such edge. In
the appendix A, we give one natural cost functionC(si, t j) for edge
weights. We now have:

(Pst)i j =
{

C(si, t j) if there is an edge from si to t j
∞ otherwise.

The cost function explained in section A causes the Pmatrices to
have non-infinite entries to form nearly elliptical groups (figure 2).
This is due to the fact that if two frames are similar, most probably
their preceding and succeeding frames also look similar.

In order to summarize the graph, we cluster the edges of G.
We now have G′, whose nodes are the same as the nodes of G,
and whose edges represent clusters of edges of G in terms of their
f romFrame and toFrame labels. We require that, if there is a cut
between two sequences represented by an edge between two nodes
in G, there be at least one edge between the corresponding nodes in
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Figure 2: Every edge between two nodes representing different mo-
tion clips can be represented as a matrix where the entries corre-
spond to edges. Typically, if there is one edge between two nodes
in our graph, there will be several, because if it is legal to cut from
one frame in the first sequence to another in the second, it will usu-
ally also be legal to cut between neighbors of these frames. This
means that, for each pair of nodes in the graph, there is a matrix
representing the weights of edges between the nodes. The i, j’th
entry in this matrix represents the weight for a cut from the i’th
frame in the first sequence to the j’th frame in the second sequence.
The weight matrix for the whole graph is composed as a collection
of blocks of this form. Summarizing the graph involves compress-
ing these blocks using clustering.

G′. If this were not the case, our summary would rule out potential
paths. In order to insure that this condition holds and because the
graph is very large, we cluster edges connecting every pair of nodes
in G separately. We cluster unconnected edge groups of G from the
P matrices (defined between every pair of nodes) using k-means
[Bishop 1995]. The number of clusters is chosen as ma joraxislength

minoraxislength
for each group where the axis lengths refer to the ellipse that fits to
the cluster (obtained through Principal Component Analysis).

The nodes of G′ are the same as the nodes of G. The edges con-
necting nodes inG′ are cluster centers for clusters of edges connect-
ing corresponding nodes in G. The centers are computed by taking
the average of the edges in terms of f romFrame, toFrame and cost
values. At this point, every edge in G′ represents many edges in G.
We would like to have a tree of graph representations whose root
is G′, and whose leaves are G. We use k-means clustering to split
each cluster of edges in half at each intermediate level and obtain
a hierarchical representation G′ ← G′′ ← G′′′ ← · · ·← Gn ← G for
the original graph G. This is an instance of Tree-Structured Vector
Quantization [Gersho and Gray 1992].

Thus, in our summarized graph G′, each edge is the root of a
binary tree and represents all the edges in close neighborhood in
terms of the edge labels. Note that the leaf edges are the edges in
the original graph and intermediate edges are the averages of all the
leaf edges beneath them. A path inG represents a sequence of clips;
so does a path in G′, but now the positions of the clip boundaries
are quantized, so there are fewer paths.

4.2 Searching the Summaries

While searching this graph, we would like to be able to generate dif-
ferent alternative motions that achieve the same set of constraints.
During the search, we need to find paths close to optimal solutions
but do not require exact extrema, because they are too hard to find.
This motivates a random search. We used the following search strat-
egy:
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