

1

| Announcements |
| :--- | :--- |
| - Sign up for Piazza |
| - Assignment 0: due September I2th, I I :59pm |
| •Class accounts given out in Section Tuesday |
| - Homework I: due September IOth, 5:00pm |
| - Waitlist... |

	Perception -vs-Measurement
	9
- You do not "see" the spectrum of light	
- Eyes make limited measurements	
- Eyes physically adapt to circumstance	
- You brain adapts in various ways also	
- Weird psychological/psychophysical stuff also happens	

\qquad
\qquad
\qquad

Mach Bands
14

Illl

Everything's Still Relative

Perception	
The eye does not see intensity values...	

02-Color.key - September 7, 2014

```
Eyes as Sensors
The human eye contains cells that sense light
    - Rods
        - No color (sort of)
        - Spread over the retina
        -More sensitive
```



```
    Cones
    - Three types of cones
    - Each sensitive to different frequency distribution
    - Concentrated in fovea (center of the retina)
    - Less sensitive
```

Cones	
- Each type of cone responds to different range of frequencies/wavelengths - Long, medium, short - Also called by color - Red, green, blue - Misleading: "Red" does not mean your red cones are firing...	


```
Rods vs Cones
    *)
```

Rods vs Cones

Eyes as Sensors

Cones	
- Response of a cone is given by a convolution integral : $\begin{aligned} L & =\int \Phi(\lambda) L(\lambda) \mathrm{d} \lambda \\ M & =\int \Phi(\lambda) M(\lambda) \mathrm{d} \lambda \\ S & =\int \Phi(\lambda) S(\lambda) \mathrm{d} \lambda \end{aligned}$ continuous version of a dot product	

26 \qquad

Trichromaticity
Eye records color by 3 measurements
We can "foll" it with combination of 3 signals
So display devices (monitors. printers, etc.) can generate
perceivable colors as mix of 3 primaries

Cone Responses are Linear
-Response to stimulus Φ_{1} is (L_{1}, M_{1}, S_{1})
-Response to stimulus Φ_{2} is $\left(L_{2}, M_{2}, S_{2}\right)$
-Then response to $\Phi_{1}+\Phi_{2}$ is $\left(L_{1}+L_{2}, M_{1}+M 2, S_{1}+S_{2}\right)$
-Response to $n \Phi_{1}$ is $\left(n L_{1}, n M_{2}, n S_{1}\right)$

Cones and Metamers

Cone response is an integral
$L=\int \Phi(\lambda) L(\lambda) \mathrm{d} \lambda \quad M=\int \Phi(\lambda) M(\lambda) \mathrm{d} \lambda \quad S=\int \Phi(\lambda) S(\lambda) \mathrm{d} \lambda$
Metamers: Different light input $\Phi_{1}(\lambda), \Phi_{2}(\lambda)$ produce same L, M, S cone response
Different spectra look the same

- Useful for measuring color

Additive Mixing

- Given three primaries we agree on p_{1}, p_{2}, p_{3}
- Match generic input light with $\Phi=\alpha p_{1}+\beta p_{2}+\gamma p_{3}$ - Negative not realizable, but can add primary to test light
- Color now described by α, β, γ
-Example: computer monitor [RGB]

Show test light spectrum on left
Mix "primaries" on right until they match
The primaries need not be RGB

Experiment 1
Siser

Using Color Matching Functions	42
-For a monochromatic light of wavelength λ_{i} we know the amount of each primary necessary to match it:	
- Given a new light input signal	
$\Phi=\left(\begin{array}{c} \phi\left(\lambda_{1}\right) \\ \vdots \\ \phi\left(\lambda_{N}\right) \end{array}\right)$	
-Compute the primaries necessary to match it	

Using Color Matching Functions
$C=\left(\begin{array}{ccc}\bar{r}\left(\lambda_{1}\right) & \ldots & \bar{r}\left(\lambda_{N}\right) \\ \bar{g}\left(\lambda_{1}\right) & \ldots & \bar{g}\left(\lambda_{N}\right) \\ \bar{b}\left(\lambda_{1}\right) & \ldots & \bar{b}\left(\lambda_{N}\right)\end{array}\right)$
$\Phi=\left(\begin{array}{c}\phi\left(\lambda_{1}\right) \\ \vdots \\ \phi\left(\lambda_{N}\right)\end{array}\right)$

-amount of each primary necessary to match is given by $C \Phi$
\qquad \square
\qquad
\qquad
\qquad
\qquad
\qquad

CIE XYZ

44

Imaginary set of color primaries with positive values, X, Y, Z

Rescaled XYZ to xyz
Rescale X, Y, and Z to remove luminance, leaving chromaticity: $x=X /(X+Y+Z)$
$y=Y /(X+Y+Z)$
$\mathrm{z}=\mathrm{Z} /(\mathrm{X}+\mathrm{Y}+\mathrm{Z})$
$x+y+z=1$
Because the sum of the chromaticity values x, y, and z is always I.0, a plot of any two of them loses no information

Such a plot is a chromaticity diagram

\qquad \longrightarrow
\qquad
\qquad
\qquad
正
\qquad
\qquad
\qquad
46

Gamut
-Gamut is the chromaticities generated by a set of primaries
-Because everything we've done is linear, interpolation
between chromaticities on a chromaticity plot is also linear
-Thus the gamut is the convex hull of the primary
chromaticities
-What is the gamut of the CIE I93। primaries?

Other Gamuts (LCDs and NTSC)

- Given three primaries we agree on p_{1}, p_{2}, p_{3}
- Make generic color with $\Phi=W-\left(\alpha p_{1}+\beta p_{2}+\gamma p_{3}\right)$
- Max limited by W
- Color now described by α, β, γ
-Example: ink [CMYK]
Why 4th ink for black?

Additive \& Subtractive Primaries

- Incorrect to say "the additive primaries are red, green, and blue"
- Any set of three non-collinear primaries yields a gamut
- Primaries that appear red, green, and blue are a good choice, but not the only choice
- Are additional (non-collinear) primaries always better?
- Similarly saying "the subtractive primaries are magenta, cyan, and yellow is also incorrect, for the same reasons
- Subtractive primaries must collectively block the entire visible spectrum
but many sets of blockers that do so are acceptable "primaries"
- The use of black ink (the K in CMYK) is a good example
- Modern ink-jet printers often have 6 or more ink colors

Additive \& Subtractive Primaries

\qquad
\longrightarrow
\qquad
\qquad
\qquad
$\underline{4}$
\qquad
\qquad
Color Spaces

Color Spaces
RGB color cube
HSV color cone
CIE (x, y)

MacAdam Ellipses (10x) Colors in ellipses indistinguishable from center

Color Spaces
RGB color cube
HSV color cone
CIE (x, y)
CIE (u, v)
CMYK
Many others...

Monitor Intensity and Gamma

- Monitors convert pixel value into intensity level
- 0.0 maps to zero intensity $=$ black (well not quite)
- 1.0 maps to full intensity $=$ white
- Monitors are not linear
- 0.5 does not map to "halfway" gray, (e.g. 0.5 might map to 0.217) - Nonlinearity characterized by exponential function
$I=a^{\gamma}$
$I=a^{\gamma}$
where $I=$ displayed intensity and $a=$ pixel value (between 0 and । $) ~$ Where $I=$ displayed intensity and $a=$ pixel value (between 0
- For many monitors γ is near 2 (often between 1.8 and 2.2)

$$
\begin{gathered}
\text { Determining Gamma } I=a^{\gamma} \\
\text { - Suppose } \mathrm{I} \text { know displayed intensity of a pat } Z \emptyset=0.5 \\
0.5=a^{\gamma}
\end{gathered}
$$

-Let viewer adjust pixel value a of nearby patch until match

$$
\gamma=\frac{\ln 0.5}{\ln a}
$$

-How do we make a patch of known intensity?
Determining Gamma

http://mun.cs.cornell.edu/Courses/cs4620/2008fa/homeworks/gamma.htm

62

	Color Phenomena
- Light sources seldom shine directly in eye	
- Light follows some transport path, i.e.:	
- Source	
- Air	
- Object surface	
• Air	
• Eye	
- Color effected by interactions	

\qquad

| Reflection |
| :--- | :--- |

	Transmission	
	- Light strikes object	
- Some frequencies pass		
Some adsorbed (or reflected)		

	Interference
- Wave behavior of light - Cancelation - Reinforcement - Wavelength dependent	

Iridescence	
- Interaction of light with - Small structures - Thin transparent surfaces	(a) (a) (r)

	Fluorescence / Phosphorescence
- Photon come in, knocks up electron	
- Electron drops and emits photon at other frequency	
- May be some latency	
- Radio active decay can also emit visible photons	

	Black Body Radiation
- Hot objects radiate energy	
- Frequency is temperature dependent	
- Moderately hot objects get into visible range	
- Spectral distribution is given by	
$E(\lambda) \propto\left(\frac{1}{\lambda^{5}}\right)\left(\frac{1}{\exp (h c / k \lambda T)-1}\right)$	
- Leads to notion of"color temperature"	

\qquad
0
\qquad
\qquad

[^0]
[^0]: Black Body Radiation

