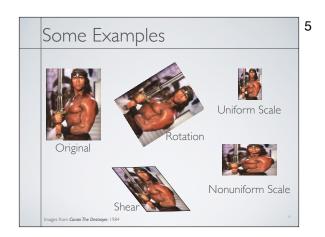
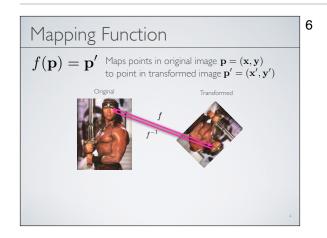
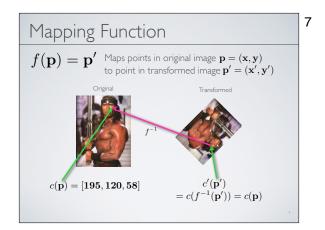
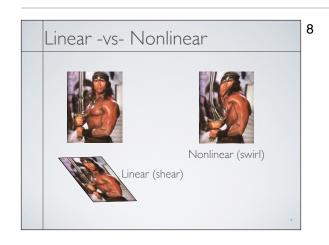
CS-184: Computer Graphics Lecture #4: 2D Transformations Prof. James O'Brien University of California, Berkeley 2 Today • 2D Transformations · "Primitive" Operations Scale, Rotate, Shear, Flip, Translate Homogenous Coordinates Start thinking about rotations...

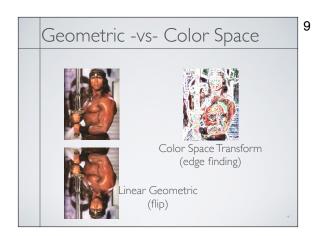
3 Introduction • Transformation: An operation that changes one configuration into another • For images, shapes, etc. A geometric transformation maps positions that define the object to Linear transformation means the transformation is defined by a linear function... which is what matrices are good for: 4 Some Examples

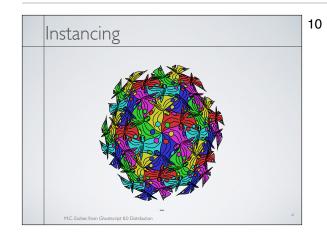


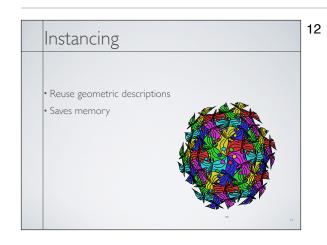












13 Linear is Linear Polygons defined by points Edges defined by interpolation between two points • Interior defined by interpolation between all points • Linear interpolation 14 Linear is Linear Composing two linear function is still linear Transform polygon by transforming vertices

Linear is Linear

Composing two linear function is still linear

• Transform polygon by transforming vertices

$$f(x) = a + bx$$
 $g(f) = c + df$

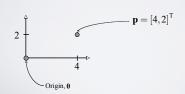
$$g(x) = c + df(x) = c + ad + bdx$$

$$g(x) = a' + b'x$$

Points in Space

ullet Represent point in space by vector in R^n

- Relative to some origin!
- Relative to some coordinate axes!
- The choice of coordinate system is arbitrary and should be convenient.
- Later we'll add something extra...



16

Basic Transformations

Basic transforms are: rotate, scale, and translate

• Shear is a composite transformation!

Linear Functions in 2D

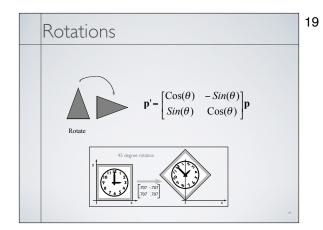
$$x' = f(x,y) = c_1 + c_2x + c_3y$$

 $y' = f(x,y) = d_1 + d_2x + d_3y$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} t_x \\ t_y \end{bmatrix} + \begin{bmatrix} M_{xx} M_{xy} \\ M_{yx} M_{yy} \end{bmatrix} \cdot \begin{bmatrix} x \\ y \end{bmatrix}$$

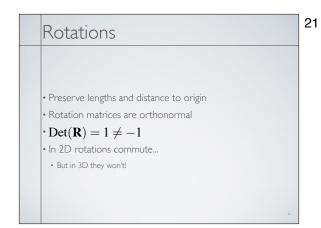
$$\mathbf{x}' = \mathbf{t} + \mathbf{M} \cdot \mathbf{x}$$

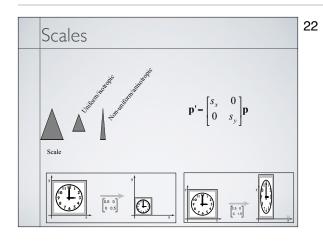
18

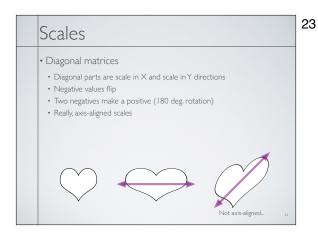


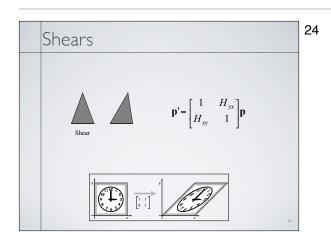
Protations

• Rotations are positive counter-clockwise
• Consistent w/ right-hand rule
• Don't be different...
• Note:
• rotate by zero degrees give identity
• rotations are modulo 360 (or 2π)









Shears • Shears are not really primitive transforms • Related to non-axis-aligned scales • More shortly.....

Translation

• This is the not-so-useful way: $\mathbf{p'} = \mathbf{p} + \begin{bmatrix} t_x \\ t_y \end{bmatrix}$ Note that its not like the others.

Arbitrary Matrices
For everything but translations we have:
$\mathbf{x}' = \mathbf{A} \cdot \mathbf{x}$
Soon, translations will be assimilated as well
What does an arbitrary matrix mean?

27

Singular Value Decomposition • For any matrix, **A**, we can write SVD: **A** = **QSR**^T where **Q** and **R** are orthonormal and **S** is diagonal • Can also write Polar Decomposition **A** = **PRSR**^T where **P** is also orthonormal **P** = **QR**^T

Decomposing Matrices

- We can force **P** and **R** to have Det=1 so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

29

Cor	npo	siti	on

Matrix multiplication composites matrices

$$p' = BAp$$

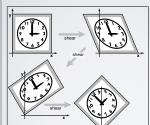
"Apply \boldsymbol{A} to \boldsymbol{p} and then apply \boldsymbol{B} to that result."

$$p' = B(Ap) = (BA)p = Cp$$

- Several translations composted to one
- Translations still left out...

$$p' = B(Ap + t) = p + Bt = Cp + u$$

Transformations built up from others



SVD builds from scale and rotations

Also build other ways

i.e. 45 deg rotation built from shears

Homogeneous Coordinates

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$\mathbf{p} = \begin{bmatrix} p_x \\ p_y \end{bmatrix} \qquad \widetilde{\mathbf{p}} = \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

· For directions the extra coordinate is a zero

Homogeneous	Iranslation

$$\widetilde{\mathbf{p}}' = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} p_x \\ p_y \\ 1 \end{bmatrix}$$

$$\widetilde{\mathbf{p}}' = \widetilde{\mathbf{A}}\widetilde{\mathbf{p}}$$

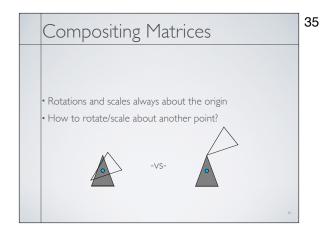
The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

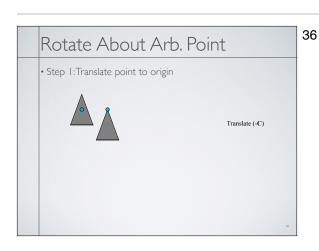
Homogeneous Others

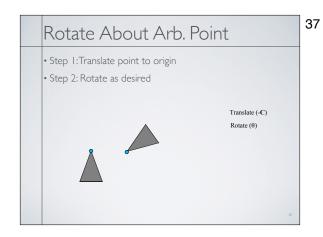
 $\widetilde{\mathbf{A}} = \begin{bmatrix} \mathbf{A} & 0 \\ \mathbf{A} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

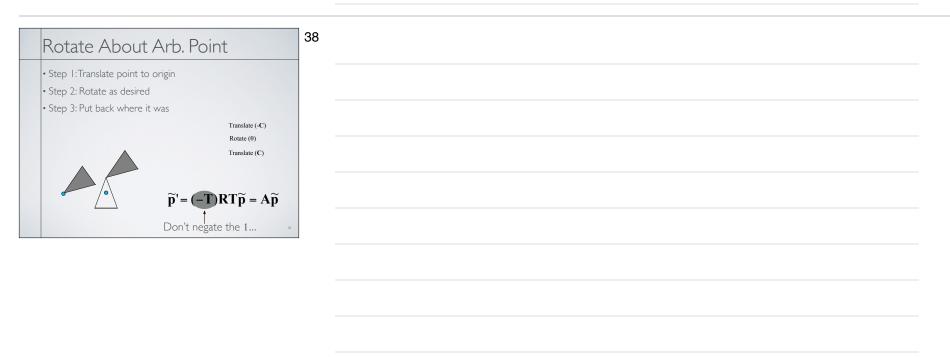
Now everything looks the same... Hence the term "homogenized!"

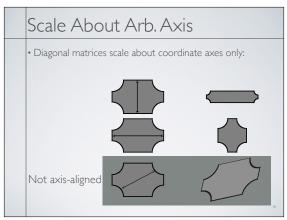
34

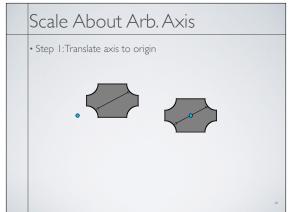




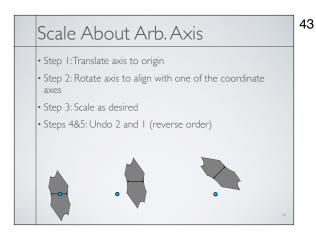








41 Scale About Arb. Axis Step I:Translate axis to origin Step 2: Rotate axis to align with one of the coordinate axes 42 Scale About Arb. Axis Step I:Translate axis to origin • Step 2: Rotate axis to align with one of the coordinate Step 3: Scale as desired



Order Matters!

• The order that matrices appear in matters

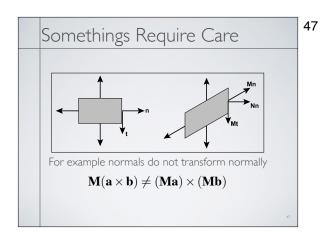
 $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B} \mathbf{A}$

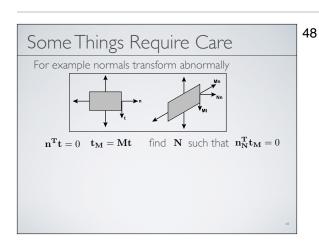
- Some special cases work, but they are special
- But matrices are associative

 $(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C} = \mathbf{A} \cdot (\mathbf{B} \cdot \mathbf{C})$

 Think about efficiency when you have many points to transform...

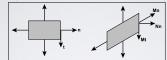
45 Matrix Inverses • In general: \mathbf{A}^{-1} undoes effect of \mathbf{A} Special cases: \cdot Translation: negate t_{x} and t_{y} Rotation: transpose Scale: invert diagonal (axis-aligned scales) • Others: Invert matrix Invert SVD matrices 46 Point Vectors / Direction Vectors • Points in space have a 1 for the "w" coordinate • What should we have for $\mathbf{a} - \mathbf{b}$? $\cdot w = 0$ · Directions not the same as positions · Difference of positions is a direction Position + direction is a position Direction + direction is a direction Position + position is nonsense





Some Things Require Care

For example normals transform abnormally

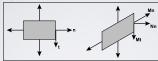


$$\mathbf{n^Tt} = 0$$
 $\mathbf{t_M} = \mathbf{Mt}$ find \mathbf{N} such that $\mathbf{n_N^Tt_M} = 0$
$$\mathbf{n^Tt} = \mathbf{n^TIt} = \mathbf{n^TM}^{-1}\mathbf{Mt} = 0$$

49

Some Things Require Care

For example normals transform abnormally



$$\mathbf{n^Tt} = \mathbf{0}$$
 $\mathbf{t_M} = \mathbf{Mt}$ find \mathbf{N} such that $\mathbf{n_N^Tt_M} = \mathbf{0}$

$$\mathbf{n^Tt} = \mathbf{n^TIt} = \mathbf{n^TM}^{-1}\mathbf{Mt} = \mathbf{0}$$

$$(\mathbf{n^TM}^{-1})\mathbf{t_M} = \mathbf{0}$$

$$\mathbf{n_N^T} = \mathbf{n^TM}^{-1}$$

