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Today

• 2D Transformations	


• “Primitive” Operations	



• Scale, Rotate, Shear, Flip, Translate	


• Homogenous Coordinates	


• SVD	


• Start thinking about rotations...
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Introduction

• Transformation: 	


An operation that changes one configuration into another	



• For images, shapes, etc.	


A geometric transformation maps positions that define the object to 
other positions	


Linear transformation means the transformation is defined by a linear 
function... which is what matrices are good for.
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Some Examples

Original
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Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale
Shear
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Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image  	


to point in transformed image 

Original Transformed

f

f�1
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Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image  	


to point in transformed image 

Original Transformed

f�1

= c(f�1(p0)) = c(p)
c(p) = [195,120,58] c0(p0)
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Linear -vs- Nonlinear

Linear (shear)
Nonlinear (swirl)
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Geometric -vs- Color Space

Linear Geometric	


(flip)

Color Space Transform	


(edge finding)
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Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution
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Instancing

Carlo Sequin
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Instancing

RHW

• Reuse geometric descriptions	


• Saves memory
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Linear is Linear
• Polygons defined by points	


• Edges defined by interpolation between two points	


• Interior defined by interpolation between all points	


• Linear interpolation
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Linear is Linear
• Composing two linear function is still linear	


• Transform polygon by transforming vertices

Scale

14

04-2DTransformations.key - September 22, 2014



15

Linear is Linear
• Composing two linear function is still linear	


• Transform polygon by transforming vertices

f (x) = a+bx g( f ) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a0 +b0x
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Points in Space
• Represent point in space by vector in 	



• Relative to some origin!	


• Relative to some coordinate axes!	


• The choice of coordinate system is arbitrary and should be convenient.	



• Later we’ll add something extra...

Rn

Origin, 0

2

4

T]4,2[=pp= [4,2]T
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Basic Transformations
• Basic transforms are: rotate, scale, and translate	


• Shear is a composite transformation!

Rotate

Translate

Scale

Shear  -- not really “basic”

Unif
or
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pic
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Linear Functions in 2D

x0 = f (x,y) = c1+ c2x+ c3y
y0 = f (x,y) = d1+d2x+d3y


x0

y0

�
=


tx
ty

�
+
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Mxx Mxy
Myx Myy

�
·

x
y

�

x0 = t+M ·x
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Rotations

Rotate
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.707   .707

y

x

45 degree rotation
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Rotations

• Rotations are positive counter-clockwise	


• Consistent w/ right-hand rule	


• Don’t be different...	


• Note: 	



• rotate by zero degrees give identity	


• rotations are modulo 360 (or      )2π

20
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Rotations

• Preserve lengths and distance to origin	


• Rotation matrices are orthonormal	


•  	


• In 2D rotations commute... 	



• But in 3D they won’t!

Det(R) = 1 6=�1
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Scales
• Diagonal matrices	



• Diagonal parts are scale in X and scale in Y directions	


• Negative values flip	


• Two negatives make a positive (180 deg. rotation)	


• Really, axis-aligned scales

Not axis-aligned...
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Shears

Shear
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Shears

• Shears are not really primitive transforms	


• Related to non-axis-aligned scales	


• More shortly.....
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Translation
• This is the not-so-useful way:

Translate
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Note that its not like the others.
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Arbitrary Matrices
• For everything but translations we have:	


!

!

• Soon, translations will be assimilated as well	


!

• What does an arbitrary matrix mean?

x0 = A ·x
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Singular Value Decomposition
• For any matrix,  A , we can write SVD:	


!

  where Q and R are orthonormal and S is diagonal	


!

• Can also write Polar Decomposition	


!

  where     is also orthonormal

TQSRA =

A = PRSRT

P = QRTP

28
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Decomposing Matrices
• We can force P and R to have Det=1 so they are rotations	


• Any matrix is now:	



• Rotation:Rotation:Scale:Rotation	


• See, shear is just a mix of rotations and scales
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Composition
• Matrix multiplication composites matrices	


!

!

!

• Several translations composted to one	


• Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp === )()('

uCpBtBAptApBp +=+=+= )('

30
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Composition

shear

x

y
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y

y

x

x

shear

shear

Transformations built 
up from others	


!

SVD builds from 
scale and rotations	


!

Also build other 
ways	


!

i.e. 45 deg rotation 
built from shears

31

32

• Move to one higher dimensional space	


• Append a 1 at the end of the vectors	


!
!
!
!
!

• For directions the extra coordinate is a zero

Homogeneous Coordinates
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Homogeneous Translation
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The tildes are for clarity to 
distinguish homogenized 
from non-homogenized 

vectors.
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Homogeneous Others
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Now everything looks the same...	


Hence the term “homogenized!”
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Compositing Matrices

• Rotations and scales always about the origin	


• How to rotate/scale about another point?

-vs-
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Rotate About Arb. Point
• Step 1: Translate point to origin

Translate (-C) 

36
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Rotate About Arb. Point
• Step 1: Translate point to origin	


• Step 2: Rotate as desired

Translate (-C) 

Rotate (θ) 

37

38Don’t negate the 1...

• Step 1: Translate point to origin	


• Step 2: Rotate as desired	


• Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C) 

Rotate (θ) 

Translate (C) 

pApRTTp ~~)('~ =−=
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Scale About Arb. Axis
• Diagonal matrices scale about coordinate axes only:

Not axis-aligned
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Scale About Arb. Axis
• Step 1: Translate axis to origin

40
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Scale About Arb. Axis
• Step 1: Translate axis to origin	


• Step 2: Rotate axis to align with one of the coordinate 

axes
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Scale About Arb. Axis
• Step 1: Translate axis to origin	


• Step 2: Rotate axis to align with one of the coordinate 

axes	


• Step 3: Scale as desired
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Scale About Arb. Axis
• Step 1: Translate axis to origin	


• Step 2: Rotate axis to align with one of the coordinate 

axes	


• Step 3: Scale as desired	


• Steps 4&5: Undo 2 and 1 (reverse order)
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Order Matters!

• The order that matrices appear in matters	


!

• Some special cases work, but they are special	


• But matrices are associative	


!

• Think about efficiency when you have many points to 
transform...

A ·B 6= BA

(A ·B) ·C= A · (B ·C)

44
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Matrix Inverses
• In general:        undoes effect of  	


• Special cases:	



• Translation: negate     and 	


• Rotation: transpose	


• Scale: invert diagonal  (axis-aligned scales)	



• Others:	


• Invert matrix	


• Invert SVD matrices  

A�1 A

tx ty
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Point Vectors / Direction Vectors
• Points in space have a 1 for the “w” coordinate	


• What should we have for          ?	



•  	


• Directions not the same as positions	


• Difference of positions is a direction	


• Position + direction is a position	


• Direction + direction is a direction	


• Position + position is nonsense

a�b
w= 0

46
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Somethings Require Care

For example normals do not transform normally

M(a⇥b) 6= (Ma)⇥ (Mb)

47
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Some Things Require Care
For example normals transform abnormally

nTt = 0 NfindtM = Mt such that nT
NtM = 0

48
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

NfindtM = Mt such that nT
NtM = 0

49
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

NfindtM = Mt such that nT
NtM = 0

50
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Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

nN = (nTM�1)T

N = (M�1)T

NfindtM = Mt such that nT
NtM = 0

See book for details
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