
CS-184: Computer Graphics
Lecture #4: 2D Transformations 	

!

!
!

Prof. James O’Brien	

University of California, Berkeley	

!!

V2014-F-04-1.0

1

2

Today

• 2D Transformations	

• “Primitive” Operations	

• Scale, Rotate, Shear, Flip, Translate	

• Homogenous Coordinates	

• SVD	

• Start thinking about rotations...

2

04-2DTransformations.key - September 22, 2014

3

Introduction

• Transformation: 	

An operation that changes one configuration into another	

• For images, shapes, etc.	

A geometric transformation maps positions that define the object to
other positions	

Linear transformation means the transformation is defined by a linear
function... which is what matrices are good for.

3

4

Some Examples

Original

4

04-2DTransformations.key - September 22, 2014

5

Some Examples

Images from Conan The Destroyer, 1984

Original

Uniform Scale

Rotation

Nonuniform Scale
Shear

5

6

Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image 	

to point in transformed image

Original Transformed

f

f�1

6

04-2DTransformations.key - September 22, 2014

7

Mapping Function
f(p) = p0

p = (x,y)
p

0 = (x0,y0)
Maps points in original image 	

to point in transformed image

Original Transformed

f�1

= c(f�1(p0)) = c(p)
c(p) = [195,120,58] c0(p0)

7

8

Linear -vs- Nonlinear

Linear (shear)
Nonlinear (swirl)

8

04-2DTransformations.key - September 22, 2014

9

Geometric -vs- Color Space

Linear Geometric	

(flip)

Color Space Transform	

(edge finding)

9

10

Instancing

RHW

M.C. Escher, from Ghostscript 8.0 Distribution

10

04-2DTransformations.key - September 22, 2014

11

Instancing

Carlo Sequin

11

12

Instancing

RHW

• Reuse geometric descriptions	

• Saves memory

12

04-2DTransformations.key - September 22, 2014

13

Linear is Linear
• Polygons defined by points	

• Edges defined by interpolation between two points	

• Interior defined by interpolation between all points	

• Linear interpolation

13

14

Linear is Linear
• Composing two linear function is still linear	

• Transform polygon by transforming vertices

Scale

14

04-2DTransformations.key - September 22, 2014

15

Linear is Linear
• Composing two linear function is still linear	

• Transform polygon by transforming vertices

f (x) = a+bx g(f) = c+d f

g(x) = c+d f (x) = c+ad+bdx

g(x) = a0 +b0x

15

16

Points in Space
• Represent point in space by vector in 	

• Relative to some origin!	

• Relative to some coordinate axes!	

• The choice of coordinate system is arbitrary and should be convenient.	

• Later we’ll add something extra...

Rn

Origin, 0

2

4

T]4,2[=pp= [4,2]T

16

04-2DTransformations.key - September 22, 2014

17

Basic Transformations
• Basic transforms are: rotate, scale, and translate	

• Shear is a composite transformation!

Rotate

Translate

Scale

Shear -- not really “basic”

Unif
or

m/is
otr

op
ic

Non
-u

nif
or

m/an
iso

tro
pic

17

18

Linear Functions in 2D

x0 = f (x,y) = c1+ c2x+ c3y
y0 = f (x,y) = d1+d2x+d3y


x0

y0

�
=


tx
ty

�
+


Mxx Mxy
Myx Myy

�
·

x
y

�

x0 = t+M ·x

18

04-2DTransformations.key - September 22, 2014

19

Rotations

Rotate

pp !
"

#
$
%

& −
=

)Cos()(
)()Cos(

'
θθ

θθ

Sin
Sin

x

.707 -.707

.707 .707

y

x

45 degree rotation

19

20

Rotations

• Rotations are positive counter-clockwise	

• Consistent w/ right-hand rule	

• Don’t be different...	

• Note: 	

• rotate by zero degrees give identity	

• rotations are modulo 360 (or)2π

20

04-2DTransformations.key - September 22, 2014

21

Rotations

• Preserve lengths and distance to origin	

• Rotation matrices are orthonormal	

• 	

• In 2D rotations commute... 	

• But in 3D they won’t!

Det(R) = 1 6=�1

21

22

Scales

0.5 0

 0 1.5

x

y

x

y

x

0.5 0

 0 0.5

y

x

y

Scale

Un
ifo
rm
/is
otr
op
ic

No
n-
un
ifo
rm
/an
iso
tro
pic

pp !
"

#
$
%

&
=

y

x

s
s
0

0
'

22

04-2DTransformations.key - September 22, 2014

23

Scales
• Diagonal matrices	

• Diagonal parts are scale in X and scale in Y directions	

• Negative values flip	

• Two negatives make a positive (180 deg. rotation)	

• Really, axis-aligned scales

Not axis-aligned...

23

24

Shears

Shear

pp !
"

#
$
%

&
=

1
1

'
xy

yx

H
H

x

 1 1

 0 1

y

x

y

24

04-2DTransformations.key - September 22, 2014

25

Shears

• Shears are not really primitive transforms	

• Related to non-axis-aligned scales	

• More shortly.....

25

26

Translation
• This is the not-so-useful way:

Translate

!
"

#
$
%

&
+=

y

x

t
t

pp'

Note that its not like the others.

26

04-2DTransformations.key - September 22, 2014

27

Arbitrary Matrices
• For everything but translations we have:	

!

!

• Soon, translations will be assimilated as well	

!

• What does an arbitrary matrix mean?

x0 = A ·x

27

28

Singular Value Decomposition
• For any matrix, A , we can write SVD:	

!

 where Q and R are orthonormal and S is diagonal	

!

• Can also write Polar Decomposition	

!

 where is also orthonormal

TQSRA =

A = PRSRT

P = QRTP

28

04-2DTransformations.key - September 22, 2014

29

Decomposing Matrices
• We can force P and R to have Det=1 so they are rotations	

• Any matrix is now:	

• Rotation:Rotation:Scale:Rotation	

• See, shear is just a mix of rotations and scales

29

30

Composition
• Matrix multiplication composites matrices	

!

!

!

• Several translations composted to one	

• Translations still left out...

BApp ='
“Apply A to p and then apply B to that result.”

CppBAApBp ===)()('

uCpBtBAptApBp +=+=+=)('

30

04-2DTransformations.key - September 22, 2014

31

Composition

shear

x

y

x

y

y

x

x

shear

shear

Transformations built
up from others	

!

SVD builds from
scale and rotations	

!

Also build other
ways	

!

i.e. 45 deg rotation
built from shears

31

32

• Move to one higher dimensional space	

• Append a 1 at the end of the vectors	

!
!
!
!
!

• For directions the extra coordinate is a zero

Homogeneous Coordinates

!
"

#
$
%

&
=

y

x

p
p

p
!
!
!

"

#

$
$
$

%

&

=

1

~
y

x

p
p

p

32

04-2DTransformations.key - September 22, 2014

33

Homogeneous Translation

!
!
!

"

#

$
$
$

%

&

!
!
!

"

#

$
$
$

%

&

=

1100
10
01

'~ y

x

y

x

p
p

t
t

p

pAp ~~'~ =
The tildes are for clarity to
distinguish homogenized
from non-homogenized

vectors.

33

34

Homogeneous Others

!
!

"

#

$
$

%

&
=

100
0
0

~ AA

Now everything looks the same...	

Hence the term “homogenized!”

34

04-2DTransformations.key - September 22, 2014

35

Compositing Matrices

• Rotations and scales always about the origin	

• How to rotate/scale about another point?

-vs-

35

36

Rotate About Arb. Point
• Step 1: Translate point to origin

Translate (-C)

36

04-2DTransformations.key - September 22, 2014

37

Rotate About Arb. Point
• Step 1: Translate point to origin	

• Step 2: Rotate as desired

Translate (-C)

Rotate (θ)

37

38Don’t negate the 1...

• Step 1: Translate point to origin	

• Step 2: Rotate as desired	

• Step 3: Put back where it was

Rotate About Arb. Point

Translate (-C)

Rotate (θ)

Translate (C)

pApRTTp ~~)('~ =−=

38

04-2DTransformations.key - September 22, 2014

39

Scale About Arb. Axis
• Diagonal matrices scale about coordinate axes only:

Not axis-aligned

39

40

Scale About Arb. Axis
• Step 1: Translate axis to origin

40

04-2DTransformations.key - September 22, 2014

41

Scale About Arb. Axis
• Step 1: Translate axis to origin	

• Step 2: Rotate axis to align with one of the coordinate

axes

41

42

Scale About Arb. Axis
• Step 1: Translate axis to origin	

• Step 2: Rotate axis to align with one of the coordinate

axes	

• Step 3: Scale as desired

42

04-2DTransformations.key - September 22, 2014

43

Scale About Arb. Axis
• Step 1: Translate axis to origin	

• Step 2: Rotate axis to align with one of the coordinate

axes	

• Step 3: Scale as desired	

• Steps 4&5: Undo 2 and 1 (reverse order)

43

44

Order Matters!

• The order that matrices appear in matters	

!

• Some special cases work, but they are special	

• But matrices are associative	

!

• Think about efficiency when you have many points to
transform...

A ·B 6= BA

(A ·B) ·C= A · (B ·C)

44

04-2DTransformations.key - September 22, 2014

45

Matrix Inverses
• In general: undoes effect of 	

• Special cases:	

• Translation: negate and 	

• Rotation: transpose	

• Scale: invert diagonal (axis-aligned scales)	

• Others:	

• Invert matrix	

• Invert SVD matrices

A�1 A

tx ty

45

46

Point Vectors / Direction Vectors
• Points in space have a 1 for the “w” coordinate	

• What should we have for ?	

• 	

• Directions not the same as positions	

• Difference of positions is a direction	

• Position + direction is a position	

• Direction + direction is a direction	

• Position + position is nonsense

a�b
w= 0

46

04-2DTransformations.key - September 22, 2014

47

Somethings Require Care

For example normals do not transform normally

M(a⇥b) 6= (Ma)⇥ (Mb)

47

48

Some Things Require Care
For example normals transform abnormally

nTt = 0 NfindtM = Mt such that nT
NtM = 0

48

04-2DTransformations.key - September 22, 2014

49

Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

NfindtM = Mt such that nT
NtM = 0

49

50

Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

NfindtM = Mt such that nT
NtM = 0

50

04-2DTransformations.key - September 22, 2014

51

Some Things Require Care
For example normals transform abnormally

nTt = 0

nTt = nTIt = nTM�1Mt = 0

(nTM�1)tM = 0

nT
N = nTM�1

nN = (nTM�1)T

N = (M�1)T

NfindtM = Mt such that nT
NtM = 0

See book for details

51

04-2DTransformations.key - September 22, 2014

