CS-184: Computer Graphics Lecture \#5: 3D Transformations and Rotations

Today	
- Transformations in 3D - Rotations - Matrices - Euler angles - Exponential maps - Quaternions	

3D Transformations
- Generally, the extension from 2D to 3D is straightforward - Vectors get longer by one - Matrices get extra column and row - SVD still works the same way - Scale,Translation, and Shear all basically the same - Rotations get interesting

Translations	
$\tilde{\mathbf{A}}=\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]$	For 2D
$\tilde{\mathbf{A}}=\left[\begin{array}{llll}1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$	

$$
\begin{aligned}
& \text { Scales } \\
& \tilde{\mathbf{A}}=\left[\begin{array}{llll}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \tilde{\mathbf{A}}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

For 2D
For 3D
(Axis-aligned!)

Shears	
$\tilde{\mathbf{A}}=\left[\begin{array}{ccc}1 & h_{x y} & 0 \\ h_{y x} & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$	For 2D
$\tilde{\mathbf{A}}=\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z x} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	(Axis-aligned!)

	Shears
$\tilde{\mathbf{A}}=\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z x} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	

| Rotations |
| :--- | :--- |
| -3D Rotations fundamentally more complex than in 2D |
| - 2D: amount of rotation |
| 3D: amount and axis of rotation |

	Rotations
	9
- Rotations still orthonormal	
- $\operatorname{Det}(\mathbf{R})=1 \neq-1$	
- Preserve lengths and distance to origin	
- 3D rotations DO NOT COMMUTE!	
- Right-hand rule DO NOT COMMUTE!	
- Unique matrices	

[^0]```
Axis-aligned 3D Rotations
-2D rotations implicitly rotate about a third out of plane
 axis
R}=[\begin{array}{cc}{\operatorname{cos}(0)}&{-\operatorname{sin}(0)}\\{\operatorname{sin}(0)}&{\operatorname{cos}(0)}\end{array}
 R=[cccc}\begin{array}{ccc}{\operatorname{cos}(0)}&{-\operatorname{sin}(0)}&{0}\\{\operatorname{sin}(0)}&{\operatorname{cos}(0)}&{0}\\{0}&{0}&{1}\end{array}
 \diamond
)
 Note: looks same as \tilde{\mathbf{R}}
```

| Axis-aligned 3D Rotations |
| :--- |
| $\mathbf{R}_{x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]$ |
| $\mathbf{R}_{y}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$ |
| $\mathbf{R}_{2}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$ |

```
Axis-aligned 3D Rotations
```



```
[[llll}
\mp@subsup{\mathbf{R}}{v}{}=[\begin{array}{ccc}{\operatorname{cos}(0)}&{0}&{\operatorname{sin}(0)}\\{0}&{1}&{0}\\{-\operatorname{sin}(0)}&{0}&{0}\end{array}]
 [-\operatorname{sin}(0)}00\operatorname{cos}(0
\mp@subsup{\mathbf{R}}{z}{}=[\begin{array}{ccc}{\operatorname{cos}(0)}&{-\operatorname{sin}(0)}&{0}\\{\operatorname{sin}(0)}&{\operatorname{cos}(0)}&{0}\\{0}&{0}&{1}\end{array}]
```



| Axis-aligned 3D Rotations |  |
| :---: | :--- |
| - Also known as "direction-cosine" matrices |  |
|  |  |
| $\mathbf{R}_{s}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$ |  |
|  |  |
| $\mathbf{R}_{z}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$ |  |


| Arbitrary Rotations |
| :--- | :--- |
| - Can be built from axis-aligned matrices: |
| $\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$ |
| - Result due to Euler... hence called |
| Euler Angles |
| - Easy to store in vector |
| - But NOT a vector. |
| $\mathbf{R}=\operatorname{rot}(x, y, z)$ |




|  | Exponential Maps |
| :--- | :--- |
|  | 19 |
| - Given vector $\mathbf{r}$, how to get matrix $\mathbf{R}$ |  |
| - Method from text: |  |
| I. rotate about $x$ axis to put $\mathbf{r}$ into the $x$-y plane |  |
| 2. rotate about $z$ axis align $\mathbf{r}$ with the $x$ axis |  |
| 3. rotate $\boldsymbol{\theta}$ degrees about $x$ axis |  |
| 4. undo \#2 and then \#1 |  |
| 5. composite together |  |

Exponential Maps

$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

| Exponential Maps |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Rodriguez Formula$\begin{aligned} & \mathbf{x}^{\prime}=\hat{\mathbf{r}}(\hat{\mathbf{r}} \cdot \boldsymbol{\mathbf { x }}) \\ & \quad+\sin (\theta)(\hat{\mathbf{r}} \times \mathbf{x}) \\ & \quad-\cos (\theta)(\hat{\mathbf{r}} \times(\hat{\mathbf{r}} \times \mathbf{x})) \end{aligned}$ |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |

```
Exponential Maps
Building the matrix
 \mp@subsup{\mathbf{x}}{}{\prime}=((\hat{\mathbf{r}}\mp@subsup{\hat{\mathbf{r}}}{}{t})+\operatorname{sin}(0)(\hat{\mathbf{r}}\times)-\operatorname{cos}(0)(\hat{\mathbf{r}}\times)(\hat{\mathbf{r}}\times))\mathbf{x}
 (\hat{\mathbf{r}}\times)}=[\begin{array}{ccc}{0}&{-\mp@subsup{\hat{r}}{z}{}}&{\mp@subsup{\hat{r}}{y}{}}\\{\mp@subsup{\hat{r}}{z}{}}&{0}&{-\mp@subsup{\hat{r}}{x}{}}\\{-\mp@subsup{\hat{r}}{y}{}}&{\mp@subsup{\hat{r}}{x}{}}&{0}\end{array}
 Antisymmetric matrix
 (a\times)b=a\timesb
 Easy to verify by expansion
```

|  | Exponential Maps |
| :--- | :--- |
|  | 24 |
| - Allows tumbling |  |
| - No gimbal-lock! |  |
| - Orientations are space within $\pi$-radius ball |  |
| - Nearly unique representation |  |
| - Singularities on shells at $2 \pi$ |  |
| - Nice for interpolation |  |
|  |  |

$$
\begin{aligned}
& \text { Exponential Maps } \\
& \text {-Why exponential? } \begin{array}{r}
\text { - Instead of rotating once by } \theta, \\
\text { let's do } n \text { small rotations of } \theta / n \\
\text { - Now the angle is small, so the } \\
\text { rotated } \mathbf{x} \text { is approximately } \\
\mathbf{x}+(\theta / n) \hat{\mathbf{r}} \times \mathbf{x} \\
=\left(\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{n}\right) \mathbf{x} \\
(\theta / n) \hat{\mathbf{r}} \times \mathbf{x} \quad
\end{array} \\
& \mathbf{x}^{\prime}=\left(\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{n}\right)^{n} \mathbf{x}
\end{aligned}
$$

Exponential Maps

$$
\mathbf{x}^{\prime}=\lim _{n \rightarrow \infty}\left(\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{n}\right)^{n} \mathbf{x}
$$

- Remind you of anything?
$\lim _{n \rightarrow \infty}\left(1+\frac{a}{n}\right)^{n}$ is a definition of $e^{a}$
- So the rotation we want is the exponential of $(\hat{\mathbf{r}} \times) \theta$ !
- In fact you can just plug it into the infinite series..
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$=1$
$\qquad$
$\qquad$
$\qquad$ 26
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

$$
\begin{aligned}
& \text { Exponential Maps } \\
& \text { - Why exponential? } \\
& \text { - Recall series expansion of } e^{x} \\
& \qquad e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
\end{aligned}
$$

| Exponential Maps |
| :--- |
| - Why exponential? |
| - Recall series expansion of $e^{x}$ |
| - Euler: what happens if you put in $i \theta$ for $x$ |$\quad$| $i \theta$ <br> $e^{i \theta}=1+\frac{i \theta}{1!}+\frac{-\theta^{2}}{2!}+\frac{-i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots$ <br> $=\left(1+\frac{-\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\frac{\theta}{1!}+\frac{-\theta^{3}}{3!}+\cdots\right)$ <br> $=\cos (\theta)+i \sin (\theta)$ |
| ---: |

$$
\begin{aligned}
& \text { Exponential Maps } \\
& \cdot \text { Why exponentia? } \\
& e^{(\hat{\mathbf{r}} \times \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{(\hat{\mathbf{r}} \times)^{3} \theta^{3}}{3!}+\frac{(\hat{\mathbf{r}} \times)^{4} \theta^{4}}{4!}+\cdots \\
& \text { But notice that: }(\hat{\mathbf{r}} \times)^{3}=-(\hat{\mathbf{r}} \times) \\
& e^{(\mathbf{r} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times)^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots
\end{aligned}
$$

$\qquad$
$\qquad$

$$
\begin{gathered}
\text { Exponential Maps } \\
e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times)\left(\frac{\theta}{1!}-\frac{\theta^{3}}{3!}+\cdots\right)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}\left(+\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right) \\
e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times) \sin (\theta)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}(1-\cos (\theta))
\end{gathered}
$$




```
Quaternions
-Multiplication natural consequence of defn.
 q\cdot\textrm{p}=(\mp@subsup{\mathbf{z}}{q}{}\mp@subsup{s}{p}{}+\mp@subsup{\mathbf{z}}{p}{}\mp@subsup{s}{q}{}+\mp@subsup{\mathbf{z}}{p}{}\times\mp@subsup{\mathbf{z}}{q}{},\mp@subsup{s}{p}{}\mp@subsup{s}{q}{}-\mp@subsup{\mathbf{z}}{p}{}\cdot\mp@subsup{\mathbf{z}}{q}{})
- Conjugate
 q}\mp@subsup{}{}{*}=(-\mathbf{z},s
 Magnitude
 |q|}\mp@subsup{|}{}{2}=\mathbf{z}\cdot\mathbf{z}+\mp@subsup{s}{}{2}=q\cdotq\cdot\mp@subsup{q}{}{*
```

| Quaternions |  |
| :--- | :--- |
| - Vectors as quaternions |  |
| $v=(\mathbf{v}, 0)$ |  |
| - Rotations as quaternions |  |
| $r=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)$ |  |
| Rotating a vector |  |
| $x^{\prime}=r \cdot x \cdot r^{*}$ |  |
| - Composing rotations |  |
| $r=r_{1} \cdot r_{2}$ | Compare to Exp. Map |



```
Rotation Matrices
 Eigen system
 - One real eigenvalue
 - Real axis is axis of rotation
 - Imaginary values are 2D rotation as complex number
 Logarithmic formula
 (\hat{\mathbf{r}}\times)=\operatorname{ln}(\mathbf{R})=\frac{0}{2\operatorname{sin}0}(\mathbf{R}-\mp@subsup{\mathbf{R}}{}{\top})
 0= 语 (
 Similar formulae as for exponential..
```

| Rotation Matrices |
| :--- | :--- |
| - Consider: |
| $\quad \mathbf{R I}=\left[\begin{array}{lll}r_{x x} & r_{x y} & r_{x z} \\ r_{y x} & r_{y y} & r_{y z} \\ r_{z x} & r_{z y} & r_{z z}\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ |
| - Columns are coordinate axes after <br> (true for general matrices) <br> - Rows are original axes in original system <br> (not true for general matrices) |



## Scene Graphs

- Draw scene with pre-and-post-order traversal
- Apply node, draw children, undo node if applicable
- Nodes can do pretty much anything
- Geometry, transformations, groups, color, switch, scripts, etc.
- Node types are application/implementation specific
- Requires a stack to implement "undo" post children

Nodes can cache their children

- Instances make it a DAG, not strictly a tree

Will use these trees later for bounding box trees



[^0]:    Axis-aligned 3D Rotations
    2D rotations implicitly rotate about a third out of plane axis
    

