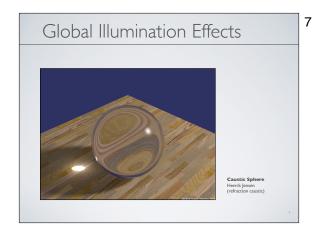
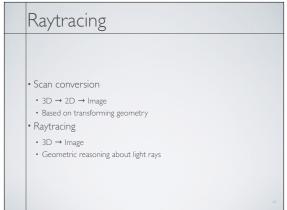
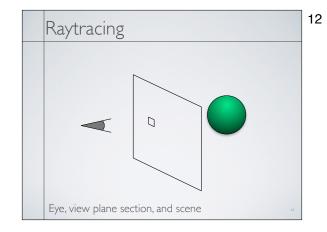

CS-184: Computer Graphics Lecture #6: Raytracing Prof. James O'Brien University of California, Berkeley

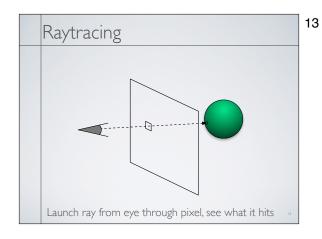
Today	
Raytracing	
Shadows and direct lighting	
Reflection and refraction Antialiasing, motion blur, soft shadows, and depth of field	
Intersection Tests Ray-primitive	
. ay p	
2	

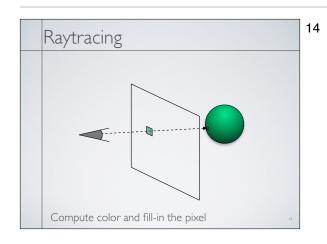


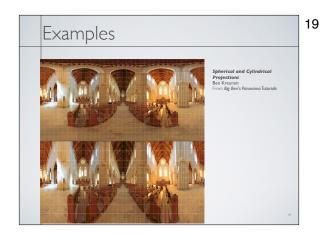
ł		
	06-RayTracing.key - September 29, 20	4


06-RayTracing.key - September 29, 2014

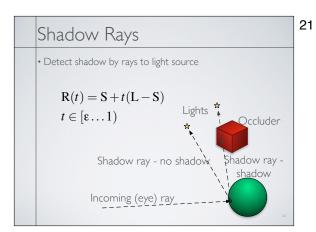








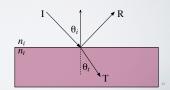
Paytracing Basic tasks Build a ray Figure out what a ray hits Compute shading


Building Eye Rays	16
Rectilinear image plane build from four points UL	
P UR	
LR LR	
P = u (vLL + (1 - v)UL) + (1 - u)(vLR + (1 - v)UR)	


Examples

Building Eye Rays	20
• Ray equation	
R(t) = E + t(P - E)	
$t \in [1 \ldots + \infty]$	
• Through eye at $t=0$ • At pixel center at $t=1$	
E	

Shadov	/ Rays		
• Test for occl	uder		
	shade normally (e.g. Phong model) skip light (don't skip ambient) ng		
Add shadow Test object IE			
	le.		
	Self-shadowing	Correct	22



Refracted Rays

- Transparent materials bend light
- Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ (see clever formula in text...)

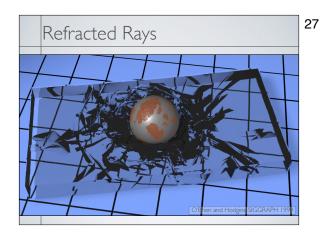
 $\sin \theta_t > 1$ Total (internal) reflection

Refracted Rays

ullet Coefficient on transmitted ray depends on ullet

Schlick approximation to Fresnel Equations

$$k_t(\theta_i) = k_0 + (1 - k_0)(1 - \cos \theta_i)^5$$


$$k_0 = \left(\frac{n_t - 1}{n_t + 1}\right)^2$$

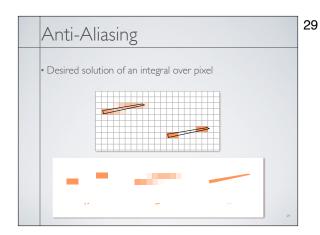
Attenuation

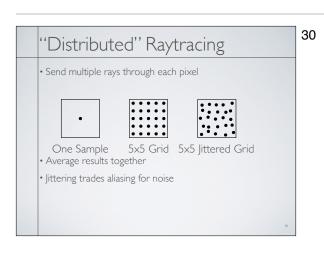
· Wavelength (color) dependant

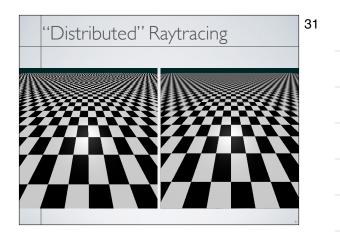
· Exponential with distance

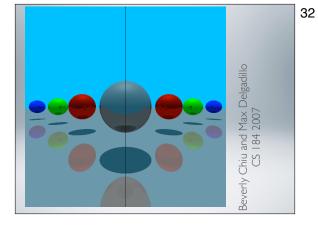
26

Anti-Aliasing

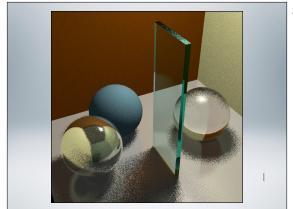

• Boolean on/off for pixels causes problems

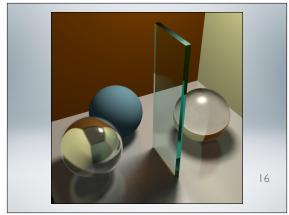

• Consider scan conversion algorithm:

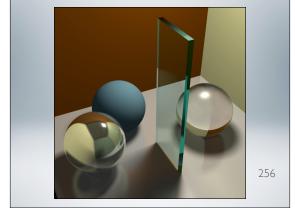

• Compare to casting a ray through each pixel center

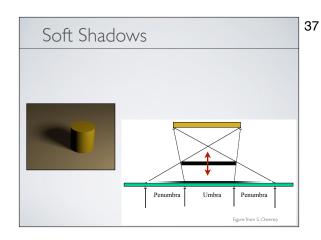

• Recall Nyquist Theorem

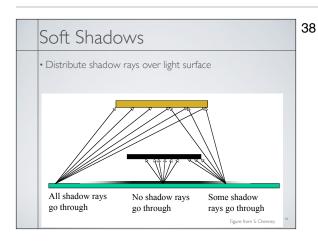
• Sampling rate ≥ twice highest frequency

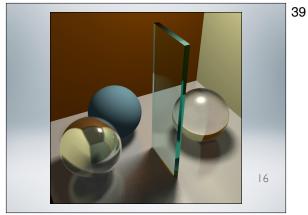


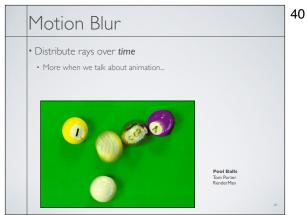


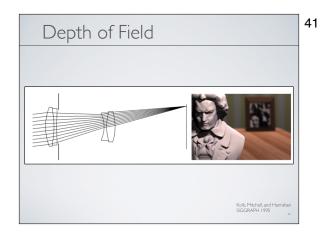

"Distributed" Raytracing

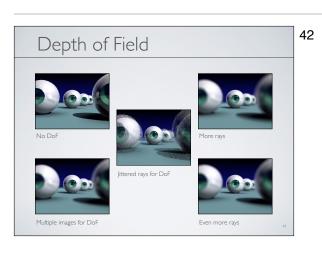

- Use multiple rays for reflection and refraction
- At each bounce send out many extra rays
- Quasi-random directions
- Use BRDF (or Phong approximation) for weights
- · How many rays?

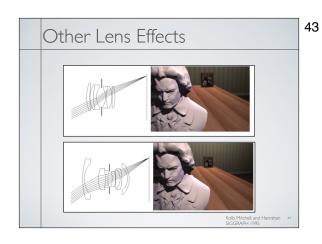



34









Ray -vs- Sphere Test
• Ray equation: $\mathbf{R}(t) = \mathbf{A} + t \mathbf{D}$ • Implicit equation for sphere: $ \mathbf{X} - \mathbf{C} ^2 - r^2 = 0$ • Combine:
$ \mathbf{R}(t) - \mathbf{C} ^2 - r^2 = 0$ $ \mathbf{A} + t \mathbf{D} - \mathbf{C} ^2 - r^2 = 0$ • Quadratic equation in t
D A

Ray -vs- Sphere Test

45

Two solutions One solution Imaginary

Ray -vs-Triangle	е
------------------	---

• Ray equation: R(t) = A + tD

• Triangle in barycentric coordinates:

$$X(\beta, \gamma) = V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1)$$

• Combine:

$$V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1) = A + tD$$

- Solve for β , γ , and t
- 3 equations 3 unknowns
- Beware divide by near-zero
- Check ranges

