CS- I 84: Computer Graphics

Lecture \# I O: Scan Conversion

Prof. James O'Brien
University of California, Berkeley

V2014-F-I0-I. 0

Today

- 2D Scan Conversion
- Drawing Lines
- Drawing Curves
- Filled Polygons
- Filling Algorithms

Drawing a Line

- Basically, its easy... but for the details
- Lines are a basic primitive that needs to be done well...

Drawing a Line

- Basically, its easy... but for the details
- Lines are a basic primitive that needs to be done well...

From "A Procedural Approach to Style for NPR Line Drawing from 3D models," by Grabli, Durand,Turquin, Sillion

Drawing a Line

$$
\underbrace{}_{\boldsymbol{p}_{1}=\left(x_{1}, y_{1}\right)}
$$

Drawing a Line

- Some things to consider
- How thick are lines?
- How should they join up?
- Which pixels are the right ones?

For example:

Drawing a Line

Drawing a Line

$$
y=m \cdot x+b, x \in\left[x_{1}, x_{2}\right]
$$

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
b=y 1-m \cdot x_{1}
$$

Drawing a Line

$\Delta x=1$
$\Delta y=m \cdot \Delta x$

$$
\begin{aligned}
& \begin{array}{l}
x=x 1 \\
y=y 1 \\
\text { while }(x<=x 2) \\
\quad \text { plot }(x, y) \\
x++ \\
y+=D y
\end{array}
\end{aligned}
$$

Drawing a Line

$\Delta x=1$
$\Delta y=m \cdot \Delta x$
After rounding

Drawing a Line

$\Delta x=1$
$\Delta y=m \cdot \Delta x$
$y+=\Delta y$
Accumulation of roundoff errors

How slow is float-to-int conversion?

Drawing a Line

Drawing a Line

void drawLine-Error1(int $x 1, x 2$, int $y 1, y 2)$

```
float m = float(y2-y1)/(x2-x1)
int x = x1
float y = y1
while (x <= x2)
setPixel(x,round(y),PIXEL_ON)
x += 1

\section*{Drawing a Line}
void drawLine-Error2(int \(x 1, x 2\), int \(y 1, y 2\) )
```

float m = float(y2-y1)/(x2-x1)
int x = xl
int y = yl
float e = 0.0
while (x <= x2)

```
```

setPixel(x,y,PIXEL_ON)

```
setPixel(x,y,PIXEL_ON)
\(x+=1\) No more rounding
\(x+=1\) No more rounding
e += m
e += m
if (e >= 0.5)
if (e >= 0.5)
    \(y^{+=1}\)
    \(y^{+=1}\)
    e-=1.0
```

 e-=1.0
    ```

\section*{Drawing a Line}
void drawLine-Error3(int \(x 1, x 2\), int \(y 1, y 2\) )
```

int x = xl
int y = yl
float e = -0.5
while (x <= x2)

```
setPixel( \(\left.x, y, P I X E L \_O N\right)\)
x += 1
e += float(y2-y1)/(x2-x1)
if (e >= 0.0)
    \(\mathrm{y}^{+=1}\)
    e-=1.0

\section*{Drawing a Line}
void drawLine-Error4 (int \(x 1, x 2\), int \(y 1, y 2\) )
```

int x = xl
int y = yl
float e = -0.5*(x2-x1)
// was -0.5
while (x <= x2)

```
setPixel(x,y,PIXEL_ON)
x += 1
e \(+=y^{2}-y 1\)
if (e >= 0.0)
    \(y^{+}=1\)
    e-=(x2-x1)
// was /(x2-x1)
// no change
// was 1.0

\section*{Drawing a Line}
void drawLine-Error5(int \(x 1, x 2\), int \(y 1, y 2\) )
```

int x = xl
int y = yl
int e = -(x2-x1)
// removed *0.5
while (x <= x2)
setPixel(x,y,PIXEL_ON)
x += 1
e += 2*(y2-y1)
if (e >= 0.0)
y+=1
e-=2*(x2-x1)
// added 2*
// no change
// added 2*

```

\section*{Drawing a Line}
void drawLine-Bresenham(int \(x 1, x 2\), int \(y 1, y 2)\)
```

int x = xl
int y = yl
int e = -(x2-x1)
while (x <= x2)

```
setPixel(x,y,PIXEL_ON)
x += 1
\(e+=2 *\left(y^{2}-y 1\right)\)
if \(\left(e^{>=}>0.0\right)\)
\(e+=2 *\left(y^{2}-y 1\right)\)
if \(\left(e^{>=}>0.0\right)\)
    \(\mathrm{y}^{+=1}\)
    \(e-=2 *(x 2-x 1)\)

\author{
Faster \\ Not wrong
}
\(0 \leq m \leq 1\)
\(x_{1} \leq x_{2}\)

\section*{Drawing Curves}


Only one value of \(y\) for each value of \(x \ldots\)

\section*{Drawing Curves}
- Parametric curves
- Both \(x\) and \(y\) are a function of some third parameter
\[
\begin{aligned}
& x=f(u) \\
& y=f(u) \\
& \mathbf{x}=\mathbf{f}(u) \\
& u \in\left[u_{0} \ldots u_{1}\right]
\end{aligned}
\]


\section*{Drawing Curves}


\section*{Drawing Curves}
- Draw curves by drawing line segments
- Must take care in computing end points for lines
- How long should each line segment be?


\section*{Drawing Curves}
- Draw curves by drawing line segments
- Must take care in computing end points for lines
- How long should each line segment be?
- Variable spaced points

\[
\mathbf{x}=\mathbf{f}(u) \quad u \in\left[u_{0} \ldots u_{1}\right]
\]

\section*{Drawing Curves}
- Midpoint-test subdivision

\(\left|\mathbf{f}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right|\)

\section*{Drawing Curves}
- Midpoint-test subdivision


\section*{Drawing Curves}
- Midpoint-test subdivision

\(\left|\mathbf{f}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right|\)

\section*{Drawing Curves}
- Midpoint-test subdivision
- Not perfect
- We need more information for a guarantee...
\(\left|\mathbf{f}\left(u_{\text {mid }}\right)-\mathbf{l}(0.5)\right|\)

\section*{Filling Triangles}
- Render an image of a geometric primitive by setting pixel colors
```

void SetPixel(int x, int y, Color rgba)

```
- Example: Filling the inside of a triangle


\section*{Filling Triangles}
- Render an image of a geometric primitive by setting pixel colors
```

void SetPixel(int x, int y, Color rgba)

```
- Example: Filling the inside of a triangle


\section*{Triangle Scan Conversion}
- Properties of a good algorithm
- Symmetric
- Straight edges
- Antialiased edges
- No cracks between adjacent primitives
- MUST BE FAST!


\section*{Triangle Scan Conversion}
- Properties of a good algorithm
- Symmetric
- Straight edges
- Antialiased edges
- No cracks between adjacent primitives
- MUST BE FAST!


\section*{Simple Algorithm}
- Color all pixels inside triangle
```

void ScanTriangle(Triangle T, Color rgba) {
for each pixel P at (x,y){
if (Inside(T, P))
SetPixel(x, Y, rgba);
}
}

```


\section*{Line Defines Two Halfspaces}
- Implicit equation for a line
- On line:
\(a x+b y+c=0\)
- On right:
\(a x+b y+c<0\)
- On left:
\(a x+b y+c>0\)


\section*{Inside Triangle Test}
- Point is inside triangle if it is in positive halfspace of all three boundary lines
- Triangle vertices are ordered counter-clockwise
- Point must be on the left side of every boundary line


\section*{Inside Triangle Test}

Boolean Inside(Triangle T, Point P) \{
for each boundary line \(L\) of \(T\) \{
Scalar d = L.a*P.x + L.b*P.y + L.c;
if ( \(\mathrm{d}<0.0\) ) return FALSE;
\}
return TRUE;
\}


\section*{Simple Algorithm}
-What is bad about this algorithm?
```

void ScanTriangle(Triangle T, Color rgba){
for each pixel P at (x,y){
if (Inside(T, P))
SetPixel(x, Y, rgba);
}
}

```


\section*{Triangle Sweep-Line Algorithm}
- Take advantage of spatial coherence
- Compute which pixels are inside using horizontal spans
- Process horizontal spans in scan-line order
- Take advantage of edge linearity
- Use edge slopes to update coordinates incrementally


\section*{Triangle Sweep-Line Algorithm}
void ScanTriangle(Triangle T, Color rgba)\{
for each edge pair \{ initialize \(\mathrm{x}_{\mathrm{L}}, \mathrm{x}_{\mathrm{R}}\); compute \(\mathrm{dx}_{\mathrm{L}} / \mathrm{dy}_{\mathrm{L}}\) and \(\mathrm{dx}_{\mathrm{R}} / \mathrm{dy}_{\mathrm{R}}\); for each scanline at \(y\) for (int \(\mathrm{x}=\operatorname{ceil}\left(\mathrm{x}_{\mathrm{L}}\right) ; \mathrm{x}<=\mathrm{x}_{\mathrm{R}} ; \mathrm{x}++\) ) SetPixel(x, y, rgba);
\(\mathrm{x}_{\mathrm{L}}+=\mathrm{d} \mathrm{x}_{\mathrm{L}} / \mathrm{d} \mathrm{y}_{\mathrm{L}}\);
\(x_{R}+=d x_{R} / d y_{R}\);
\}
\}

Bresenham's algorithm works the same way, but uses only integer operations!


\section*{Antialiasing}

Desired solution of an integral over pixel


\section*{Hardware Antialiasing}

Supersample pixels
- Multiple samples per pixel
- Average subpixel intensities (box filter)
- Trades intensity resolution for spatial resolution


\section*{Optimize forTriangles}
- Spilt triangle into two parts
- Two edges per part
- Y-span is monotonic
- For each row
- Interpolate span
- Interpolate barycentric coordinates


\section*{Hardware Scan Conversion}
- Convert everything into triangles
- Scan convert the triangles


\section*{Polygon Scan Conversion}
- Fill pixels inside a polygon
- Triangle
- Quadrilateral
- Convex
- Star-shaped
- Concave

- Self-intersecting
- Holes


What problems do we encounter with arbitrary polygons?

\section*{Polygon Scan Conversion}
- Need better test for points inside polygon
- Triangle method works only for convex polygons


Convex Polygon


Concave Polygon

\section*{Inside Polygon Rule}
-What is a good rule for which pixels are inside?


Concave


Self-Intersecting


With Holes

\section*{Inside Polygon Rule}
- Odd-parity rule
- Any ray from \(P\) to infinity crosses odd number of edges


Concave


Self-Intersecting


With Holes

The Polygon
Non-exterior


Non-zero winding
Parity

Filled Polygons


\section*{Filled Polygons}


\section*{Filled Polygons}

Toggle inside/outside flag to "INSIDE"


\section*{Filled Polygons}

Toggle inside/outside flag to "OUTSIDE"


\section*{Filled Polygons}

What happens at these locations?


\section*{Filled Polygons}

If we count ONCE...


\section*{Filled Polygons}

If we count TWICE...


Filled Polygons

Treat (scan y \(=\) vertex \(y\) ) as (scan \(y>\) vertex y)


\section*{Filled Polygons}

Horizontal edges


\section*{Filled Polygons}

Horizontal edges


\section*{Filled Polygons}
- "Equality Removal" applies to all vertices
- Both \(x\) and \(y\) coordinates


\section*{Filled Polygons}
- Final result:


\section*{Filled Polygons}
-Who does this pixel belong to?


Drawing a Line
-How thick?
- Ends?


\section*{Drawing a Line}
- Joining?


Ugly


Bevel


Round


Miter

Flood Fill

\section*{Flood Fill}



Start Position


\section*{Span-Based Algorithm}

Definition: a run is a horizontal span of identically colored pixels

I. Start at pixel "s", the seed.
2. Find the run containing "s" ("b" to "a").
3. Fill that run with the new color.
4. Search every pixel above run, looking for pixels of interior color
5. For each one found,
6. Find left side of that run ("c'), and push that on a stack.
7. Repeat lines 4-7 for the pixels below ("d").
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at "e","f"," "","h", and "i"```

