# CS-184: Computer Graphics Lecture #13: Natural Splines, B-Splines, and NURBS Prof. James O'Brien University of California, Berkeley

| Natural Splines                                 |                                                                |
|-------------------------------------------------|----------------------------------------------------------------|
| Draw a "smooth" line through several processes. | oints                                                          |
|                                                 | A real draftsman's spline.  Image from Carl de Boor's webpage. |

### Natural Cubic Splines

3

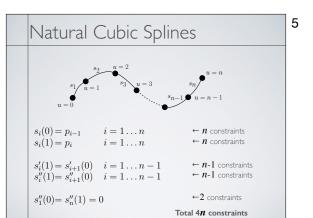
- Given n+1 points
- $\cdot$  Generate a curve with n segments
- Curves passes through points
- $\cdot$  Curve is  $C^2$  continuous
- Use cubics because lower order is better...

Natural Cubic Splines

 $s_{2} \quad u = 2$  u = n  $s_{3} \quad u = 3$  u = 3  $s_{n-1} \quad u = n - 1$  u = 0

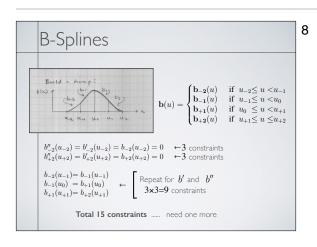
$$\mathbf{x}(u) = \begin{cases} \mathbf{s}_1(u) & \text{if } 1 \le u < 1 \\ \mathbf{s}_2(u-1) & \text{if } 1 \le u < 2 \\ \mathbf{s}_3(u-2) & \text{if } 2 \le u < 3 \end{cases}$$
$$\vdots$$
$$\mathbf{s}_n(u-(n-1)) & \text{if } n-1 \le u \le n \end{cases}$$

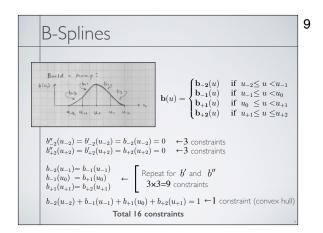
4

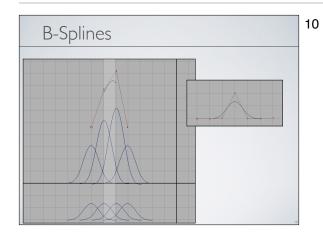


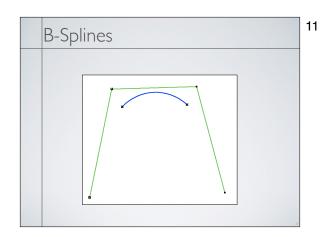
|                                       | _ |
|---------------------------------------|---|
| Natural Cubic Splines                 | 6 |
|                                       |   |
|                                       |   |
| Interpolate data points               |   |
| No convex hull property               |   |
| Non-local support                     |   |
| Consider matrix structure             |   |
| $ullet$ $C^2$ using cubic polynomials |   |
|                                       |   |
|                                       |   |
| 6                                     |   |
|                                       |   |

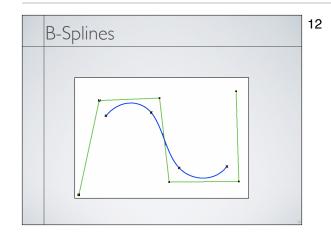
## • Goal: $C^2$ cubic curves with local support • Give up interpolation • Get convex hull property • Build basis by designing "hump" functions

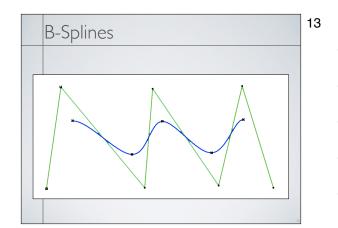


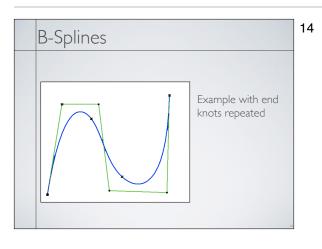








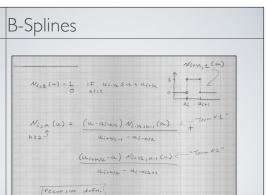


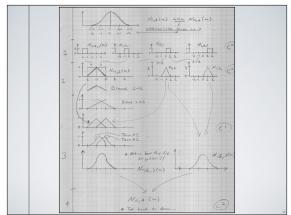




## 15 B-Splines Build a curve w/ overlapping bumps Continuity • Inside bumps ${\cal C}^2$ • Bumps "fade out" with $\,C^2\,$ continuity Boundaries Circular Repeat end points Extra end points 16 B-Splines Notation • The basis functions are the $b_i(u)$ "Hump" functions are the concatenated function Sometimes the humps are called basis... can be confusing • The $\,u_i$ are the knot locations The weights on the hump/basis functions are control points

## 17 **B-Splines** • Similar construction method can give higher continuity with higher degree polynomials Repeating knots drops continuity · Limit as knots approach each other • Still cubics, so conversion to other cubic basis is just a matrix multiplication 18 **B-Splines** Geometric construction • Due to Cox and de Boor My own notation, beware if you compare w/ text ullet Let hump centered on $u_i$ be $N_{i,4}(u)$ Cubic is order 4/ $N_{i,k}(u)$ is order $\,k$ hump, centered at $\,u_i$ Note: i is integer if k is even else (i + 1/2) is integer





NURBS

21

- Nonuniform Rational B-Splines
- Basically B-Splines using homogeneous coordinates
- Transform under perspective projection
- A bit of extra control

NURBS

 $\mathbf{p}_i = egin{bmatrix} p_{ix} \ p_{iy} \ p_{iz} \ p_{iw} \end{bmatrix} \mathbf{x}(u) = rac{\sum_i \begin{bmatrix} p_{ix} \ p_{iy} \ p_{iz} \end{bmatrix}}{\sum_i p_{iw} N_i} N_i$ 

- Non-linear in the control points
- ullet The  $p_{iw}$  are sometimes called "weights"

22