| CS-184: Computer Graphics          |  |
|------------------------------------|--|
|                                    |  |
| Lecture #19: Motion Capture        |  |
| 1                                  |  |
| Prof James O'Brien                 |  |
| University of California, Berkeley |  |
| V2014-0-1.0                        |  |
|                                    |  |
|                                    |  |

| Today            |  |
|------------------|--|
|                  |  |
| • Motion Capture |  |
|                  |  |
|                  |  |
| 2                |  |
|                  |  |





| What types of objects? |
|------------------------|
|                        |
| • Human, whole body    |
| • Portions of body     |
| Facial animation       |
| • Animals              |
| • Puppets              |
| • Other objects        |
|                        |
| 5                      |









| Capture Equipment                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Electromagnetic Advantages         • 6 DOF data         • No occlusions         • Less post processing         • Cheaper than optical                                        |
| <ul> <li>Disadvantages</li> <li>Cables</li> <li>Problems with metal objects</li> <li>Low(er) frequency</li> <li>Limited range</li> <li>Limited number of trackers</li> </ul> |
| 10                                                                                                                                                                           |

## Capture Equipment • Electromechanical Image: Comparison of the second s



| Performance Capture                                                                      |
|------------------------------------------------------------------------------------------|
|                                                                                          |
| Many studios regard <i>Motion</i> Capture as evil     Synonymous with low quality motion |
| No directive / creative control     Cheap                                                |
| Performance Capture is different     Use mocap device as an expressive input device      |
| Similar to digital music and MIDI keyboards                                              |
| 0                                                                                        |

| Manipulating Motion Data                                                    |  |
|-----------------------------------------------------------------------------|--|
|                                                                             |  |
| <ul> <li>Basic tasks</li> <li>Adjusting</li> <li>Blending</li> </ul>        |  |
| <ul><li>Transitioning</li><li>Retargeting</li><li>Building graphs</li></ul> |  |
|                                                                             |  |
| 14                                                                          |  |

## Adjusting

|     | Nature of Motion Data                                        |  |
|-----|--------------------------------------------------------------|--|
| wny | Witkin and Popovic, 1995                                     |  |
|     | A CANA A                                                     |  |
|     |                                                              |  |
|     |                                                              |  |
|     | Subset of motion curves from                                 |  |
|     | captured walking motion From Witkin and Popovic, SIGGRAPH 95 |  |





|  | Adjusting                                                                                                                         |
|--|-----------------------------------------------------------------------------------------------------------------------------------|
|  |                                                                                                                                   |
|  |                                                                                                                                   |
|  | Select adjustment function from "some nice space     Example C2 B-splines     Spread modification even researchile period of time |
|  | <ul> <li>Spread modification over reasonable period of time</li> <li>User selects support radius</li> </ul>                       |
|  |                                                                                                                                   |
|  | 18                                                                                                                                |

| Adjusting                                                                                                               |                                                                                       |  |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--|
| IK uses         points of spline in         Example         position         fix right         fix left         balance | s control<br>o f the B-<br>now<br>ple:<br>tion racket<br>ight foot<br>eft toes<br>nce |  |















## Blending / Adjustment • Short edits will tend to look acceptable • Longer ones will often exhibit problems • Optimize to improve blends / adjustments • Add quality metric on adjustment • Minimize accelerations / torques • Explicit smoothness constraints • Other criteria...







| Cyclification                                                                        |    |
|--------------------------------------------------------------------------------------|----|
|                                                                                      |    |
|                                                                                      |    |
| <ul> <li>Special case of transitioning</li> <li>Both motions are the same</li> </ul> |    |
| <ul> <li>Need to modify beginning and end of a motion simultaneously</li> </ul>      |    |
|                                                                                      |    |
|                                                                                      | 31 |





| Motion Graphs                                                                                                        |  |
|----------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                      |  |
|                                                                                                                      |  |
| Similarity metric     Measurement of how similar two frames of motion are                                            |  |
| <ul><li>Based on joint angles or point positions</li><li>Must include some measure of velocity</li></ul>             |  |
| <ul> <li>Ideally independent of capture setup and skeleton</li> <li>Capture a "large" database of motions</li> </ul> |  |
|                                                                                                                      |  |
|                                                                                                                      |  |



| Motion graphs                                                                                    |
|--------------------------------------------------------------------------------------------------|
|                                                                                                  |
| Match imposed requirements                                                                       |
| Start at a particular location                                                                   |
| End at a particular location     Pass through particular pose                                    |
| Can be solved using <i>dynamic programing</i> Efficiency issues may require approximate solution |
| Notion of "goodness" of a solution                                                               |
|                                                                                                  |
| 36                                                                                               |

| Typical Motion Graph                                                                 | Motion Graph                                                |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Walking #1<br>Running<br>Idle<br>Fall down<br>Walking #2<br>Punches<br>Recorded Time | Finite number of states<br>Cloth is hysteretic<br>rded Time |



















## Precomputed Simulation

- No significant CPU load at runtime
- Decouples quality from runtime cost
- No new data at runtime
- Simulation can't crash application
- All motion can be inspected/edited
   Allows QA and art direction of simulations
- Extend to other types of simulation?
- Dynamic variations?

| Suggested Reading                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                           |
| • Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95                                                    |
| Motion signal processing, Bruderlin and Williams, SIGGRAPH 95                                                                                             |
| Motion warping, Witkin and Popovic, SIGGRAPH 95                                                                                                           |
| • Efficient generation of motion transitions using spacetime constrains, Rose et al.,<br>SIGGRAPH 96                                                      |
| Retargeting motion to new characters, Gleicher, SIGGRAPH 98                                                                                               |
| • Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and<br>Bodenheimer, IEEE: Computer Graphics and Applications, v. 18, no. 5, 1998 |
| 4.                                                                                                                                                        |

| Suggested Reading                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                 |
| Retargeting motion to new characters, Gleicher, SIGGRAPH 98                                                                     |
| Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002.                                         |
| Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002.                                                 |
| Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.                                                 |
| Pushing People Around, Arikan, Forsyth, and O'Brien, unpublished.                                                               |
| Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien,<br>Bodenheimer, Brostow, and Hodgins, GI 2000. |
| Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and<br>Forsyth, CVPR 2005.                       |
| Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and<br>Tumblin, IEEE:TVCG 1998.                   |
| 47                                                                                                                              |