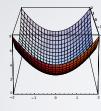

CS-184: Computer Graphics	1
Lecture #20: Spring and Mass systems Prof. James O'Brien University of California, Berkeley	
Today	2
Spring and Mass systems Distance springs Spring dampers Edge springs	
2	


• Ideal zero-length spring

$$oldsymbol{f}_{a o b}=k_S(oldsymbol{b}-oldsymbol{a})$$

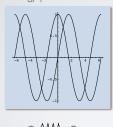
- ullet Force pulls points together $oldsymbol{f}_{b
 ightarrow a} = -oldsymbol{f}_{a
 ightarrow b}$
- Strength proportional to distance

٨	C.	1 (
A	Simp	Ie '	SDri	nσ
, ,			771	۱ 'ک

Energy potential

$$E = 1/2 k_S(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

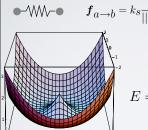
$$egin{aligned} oldsymbol{f}_{a o b} &= k_{S}(oldsymbol{b} - oldsymbol{a}) \ oldsymbol{f}_{b o a} &= -oldsymbol{f}_{a o b} \end{aligned}$$


$$f_{b \rightarrow a} = -f_{a \rightarrow b}$$

$$f_a = -\nabla_a E = -\left[\frac{\partial E}{\partial a_x}, \frac{\partial E}{\partial a_y}, \frac{\partial E}{\partial a_z}\right]$$

•-\\\\-

8


• Energy potential: kinetic **vs** elastic

$$E = 1/2 k_S(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$$E = 1/2 \ m(\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$

Non-Zero Length Springs

$$\mathbf{f}_{a \to b} = ks \frac{\mathbf{b} - \mathbf{a}}{||\mathbf{b} - \mathbf{a}||} (||\mathbf{b} - \mathbf{a}|| - l)$$
Rest length

 $E = k_{\mathcal{S}} (||\boldsymbol{b} - \boldsymbol{a}|| - l)^2$

Comments on Springs	9
Springs with zero rest length are linear Springs with non-zero rest length are nonliner Force magnitude linear w/ discplacement (from rest length) Force direction is non-linear Singularity at	
b - a = 0	,
Damping	10
• "Mass proportional" damping	
• Behaves like viscous drag on all motion • Consider a pair of masses connected by a spring • How to model rusty vs oiled spring • Should internal damping slow group motion of the pair? • Can help stability up to a point	

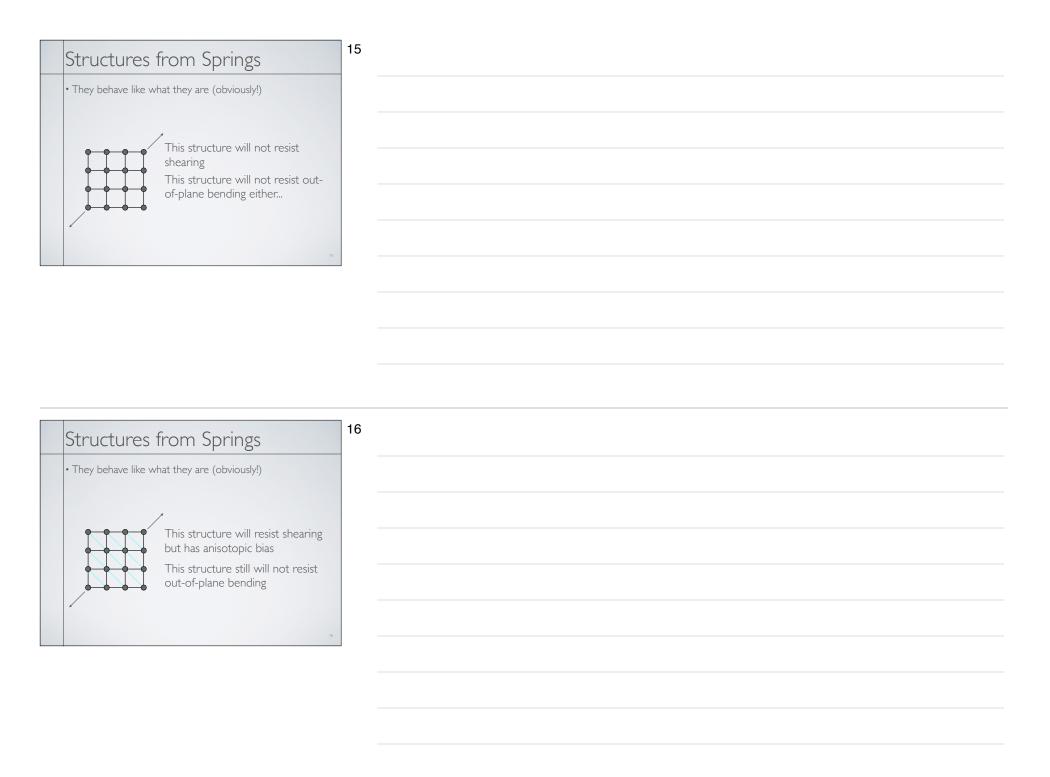
Damping

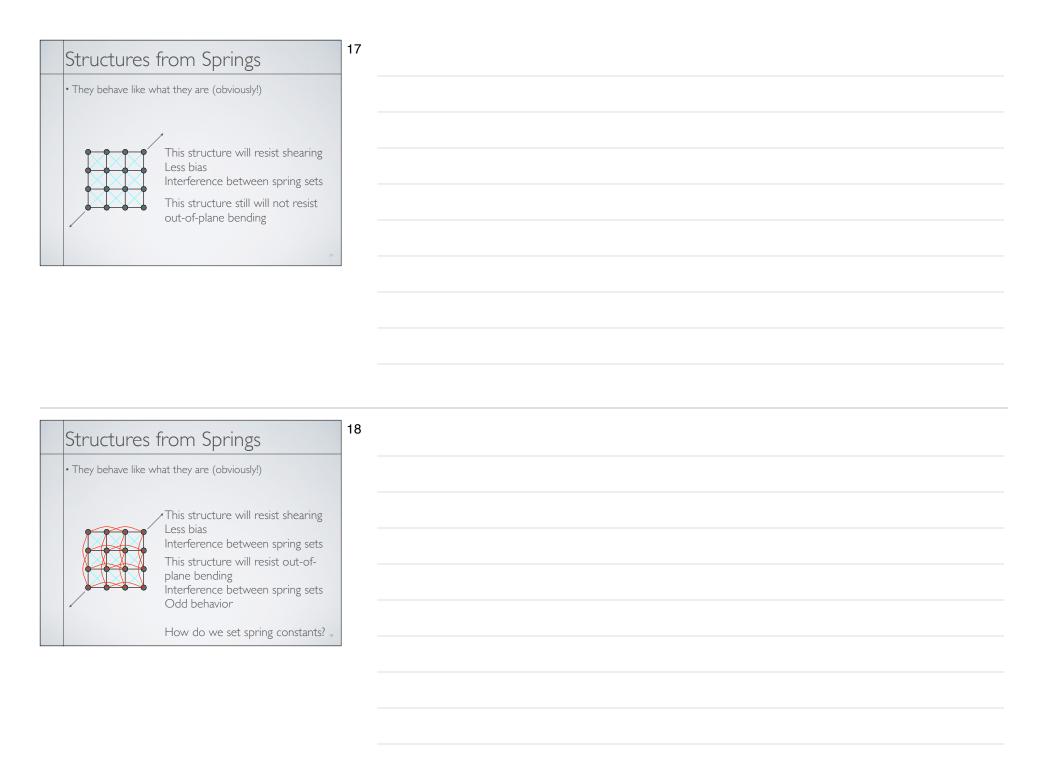
• "Stiffness proportional" damping

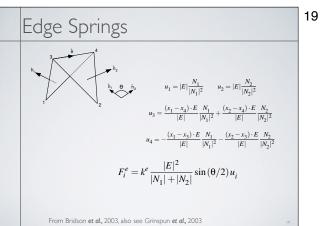
$$\textbf{\textit{f}}_a = -k_d \frac{\textbf{\textit{b}} - \textbf{\textit{a}}}{||\textbf{\textit{b}} - \textbf{\textit{a}}||^2} (\textbf{\textit{b}} - \textbf{\textit{a}}) \cdot (\dot{\textbf{\textit{b}}} - \dot{\textbf{\textit{a}}})$$
 • Behaves viscous drag on change in spring length

- · Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?

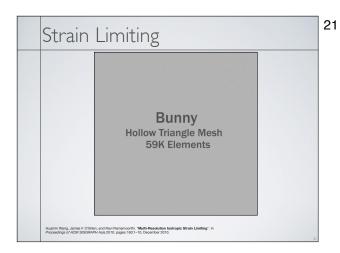
Spring Constants	
• Two ways to model a single spring	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
$\begin{array}{c c} & & & \\ \hline \Delta l & & & \\ \hline \end{array}$	
<u> </u>	12


12


11


- ${}^{\raisebox{3.5pt}{\text{\circle*{1.5}}}}$ Constant $k_{\mathcal{S}}$ gives inconsistent results with different discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length

$$\epsilon = \frac{\Delta l}{l_0} \quad \text{Nice and simple for ID...}_{_{_{13}}}$$


	Structures from Springs	14
	• Sheets	
	• Blocks	
	• Others	
	14	

Suggested Reading	23	
Physically Based Modeling: Principles and Practice		
Andy Witkin and David Baraff http://www-2.cs.cmuedu/~baraff/sigcourse/index.html Grinspun, Hirani, Desbrun, and Peter Schroder, "Discrete Shells," SCA 2003 Bridson, Marino, and Fedkiw, "Simulation of Clothing with Folds and Wrinkles," SCA 2003 O'Brien and Hodgins, "Graphical Modeling and Animation of Brittle Fracture," SIGGRAPH 99		
27		